{"title":"强过冷两相“甲烷-水体系”中天然气水合物结晶与生长过程的分子动力学研究","authors":"Khusnutdinoff R.M., Khairullina R.R., Yunusov M.B.","doi":"10.21883/pss.2023.02.55420.522","DOIUrl":null,"url":null,"abstract":"The processes of nucleation and growth of methane hydrate in a highly supercooled two-phase \"methane-water\" system obtained using various cooling protocols are considered. It has been shown that, at sufficiently high cooling rates, crystalline forms of methane hydrate can still form in the system. It was found that, at a cooling rate of γ=1.0 K/ps, the process of nucleation and growth of gas hydrate was observed in all independent molecular dynamics iterations, while at a cooling rate of γ=10.0 K/ps, no nucleation event was observed in ~26.7% of numerical experiments. It was found that with an increase in the cooling rate of the system, an increase in the average time scale of nucleation tauc and a decrease in the critical size of the nucleus nc are observed. It is shown that at a sufficiently deep level of supercooling of the system, the scenario of homogeneous crystalline nucleation is realized at the initial stage of the phase transition. Keywords: molecular dynamics, crystallization, methane hydrate.","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"83 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Dynamics Studies of the Process of Crystallization and Growth of Gas Hydrates in a Strongly Supercooled Two-Phase \\\"Methane-Water System\\\"\",\"authors\":\"Khusnutdinoff R.M., Khairullina R.R., Yunusov M.B.\",\"doi\":\"10.21883/pss.2023.02.55420.522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The processes of nucleation and growth of methane hydrate in a highly supercooled two-phase \\\"methane-water\\\" system obtained using various cooling protocols are considered. It has been shown that, at sufficiently high cooling rates, crystalline forms of methane hydrate can still form in the system. It was found that, at a cooling rate of γ=1.0 K/ps, the process of nucleation and growth of gas hydrate was observed in all independent molecular dynamics iterations, while at a cooling rate of γ=10.0 K/ps, no nucleation event was observed in ~26.7% of numerical experiments. It was found that with an increase in the cooling rate of the system, an increase in the average time scale of nucleation tauc and a decrease in the critical size of the nucleus nc are observed. It is shown that at a sufficiently deep level of supercooling of the system, the scenario of homogeneous crystalline nucleation is realized at the initial stage of the phase transition. Keywords: molecular dynamics, crystallization, methane hydrate.\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.21883/pss.2023.02.55420.522\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21883/pss.2023.02.55420.522","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Molecular Dynamics Studies of the Process of Crystallization and Growth of Gas Hydrates in a Strongly Supercooled Two-Phase "Methane-Water System"
The processes of nucleation and growth of methane hydrate in a highly supercooled two-phase "methane-water" system obtained using various cooling protocols are considered. It has been shown that, at sufficiently high cooling rates, crystalline forms of methane hydrate can still form in the system. It was found that, at a cooling rate of γ=1.0 K/ps, the process of nucleation and growth of gas hydrate was observed in all independent molecular dynamics iterations, while at a cooling rate of γ=10.0 K/ps, no nucleation event was observed in ~26.7% of numerical experiments. It was found that with an increase in the cooling rate of the system, an increase in the average time scale of nucleation tauc and a decrease in the critical size of the nucleus nc are observed. It is shown that at a sufficiently deep level of supercooling of the system, the scenario of homogeneous crystalline nucleation is realized at the initial stage of the phase transition. Keywords: molecular dynamics, crystallization, methane hydrate.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.