珊瑚红藻骨骼片段的结构和化学变化导致其抗裂性的提高

N. Bianco-Stein, I. Polishchuk, Arad Lang, G. Atiya, J. Villanova, P. Zaslansky, A. Katsman, B. Pokroy
{"title":"珊瑚红藻骨骼片段的结构和化学变化导致其抗裂性的提高","authors":"N. Bianco-Stein, I. Polishchuk, Arad Lang, G. Atiya, J. Villanova, P. Zaslansky, A. Katsman, B. Pokroy","doi":"10.2139/ssrn.3790077","DOIUrl":null,"url":null,"abstract":"Jania sp. is an articulated coralline red alga that is abundant in the shallow waters of oceans worldwide. We have previously demonstrated that its structure is highly intricate and exhibits hierarchical organization across multiple length scales from the macro to the nano scale. Moreover, we have proven that the inner pores of its structure are helical, conveying the alga greater compliance as compared to a cylindrical configuration. Herein, we reveal new insights on the structure of Jania sp., particularly on its crystallographic variations and the internal elemental distribution of Mg and Ca. We show that the high-Mg calcite cell wall nanocrystals of Jania sp. are arranged in layers with alternating Mg contents. Moreover, we show that this non-homogenous elemental distribution assists the alga in preventing fracture caused by crack propagation. We further discover that each one of the cell wall nanocrystals in Jania sp. is not a single crystal as was previously thought, but rather comprises Mg-rich calcite nanoparticles demonstrating various crystallographic orientations, arranged periodically within the layered structure. We also show that these Mg-rich nanoparticles are present in yet another species of the coralline red algae, Corallina sp., pointing to the generality of this phenomenon. To the best of our knowledge this is a first report on the existence of Mg-rich nanoparticles in the coralline red algae mineralized tissue. We envisage that our findings on the bio-strategy found in the alga to enhance the fracture toughness will have an impact on the design of structures with superior mechanical properties. Statement of Significance: Understanding the structure-property relation in biomineralized tissues is of great importance in unveiling Nature's material design strategies, which form the basis for the development of novel structural materials. Crystallographic and elemental variations in the skeletal parts of the coralline red algae and their cumulative contribution to prevention of mechanical failure are yet poorly studied. Herein, we reveal that the high-Mg calcite cell wall nanocrystals of Jania sp. are arranged in layers with alternating Mg concentrations and reveal that this organization facilitates crack deflection, thereby preventing catastrophic fracture. We further discovered that the nanocrystals contain incoherent Mg-rich nanoparticles and suggest that they form via spinodal decomposition of the Mg-ACC precursor and self-arrange periodically throughout the alga's mineralized cell wall, a phenomenon most likely to be widespread in high-Mg calcite biomineralization.","PeriodicalId":9858,"journal":{"name":"Chemical Engineering (Engineering) eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Structural and Chemical Variations in the Skeletal Segments of Coralline Red Algae Lead to Improved Crack Resistance\",\"authors\":\"N. Bianco-Stein, I. Polishchuk, Arad Lang, G. Atiya, J. Villanova, P. Zaslansky, A. Katsman, B. Pokroy\",\"doi\":\"10.2139/ssrn.3790077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Jania sp. is an articulated coralline red alga that is abundant in the shallow waters of oceans worldwide. We have previously demonstrated that its structure is highly intricate and exhibits hierarchical organization across multiple length scales from the macro to the nano scale. Moreover, we have proven that the inner pores of its structure are helical, conveying the alga greater compliance as compared to a cylindrical configuration. Herein, we reveal new insights on the structure of Jania sp., particularly on its crystallographic variations and the internal elemental distribution of Mg and Ca. We show that the high-Mg calcite cell wall nanocrystals of Jania sp. are arranged in layers with alternating Mg contents. Moreover, we show that this non-homogenous elemental distribution assists the alga in preventing fracture caused by crack propagation. We further discover that each one of the cell wall nanocrystals in Jania sp. is not a single crystal as was previously thought, but rather comprises Mg-rich calcite nanoparticles demonstrating various crystallographic orientations, arranged periodically within the layered structure. We also show that these Mg-rich nanoparticles are present in yet another species of the coralline red algae, Corallina sp., pointing to the generality of this phenomenon. To the best of our knowledge this is a first report on the existence of Mg-rich nanoparticles in the coralline red algae mineralized tissue. We envisage that our findings on the bio-strategy found in the alga to enhance the fracture toughness will have an impact on the design of structures with superior mechanical properties. Statement of Significance: Understanding the structure-property relation in biomineralized tissues is of great importance in unveiling Nature's material design strategies, which form the basis for the development of novel structural materials. Crystallographic and elemental variations in the skeletal parts of the coralline red algae and their cumulative contribution to prevention of mechanical failure are yet poorly studied. Herein, we reveal that the high-Mg calcite cell wall nanocrystals of Jania sp. are arranged in layers with alternating Mg concentrations and reveal that this organization facilitates crack deflection, thereby preventing catastrophic fracture. We further discovered that the nanocrystals contain incoherent Mg-rich nanoparticles and suggest that they form via spinodal decomposition of the Mg-ACC precursor and self-arrange periodically throughout the alga's mineralized cell wall, a phenomenon most likely to be widespread in high-Mg calcite biomineralization.\",\"PeriodicalId\":9858,\"journal\":{\"name\":\"Chemical Engineering (Engineering) eJournal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering (Engineering) eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3790077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering (Engineering) eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3790077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Jania sp.是一种铰接珊瑚红藻,在世界各地的海洋浅水中大量存在。我们之前已经证明了它的结构是高度复杂的,并且在从宏观到纳米尺度的多个长度尺度上表现出分层组织。此外,我们已经证明其结构的内部孔隙是螺旋状的,与圆柱形结构相比,传递藻类更大的顺应性。本文揭示了Jania sp.结构的新见解,特别是其晶体学变化和内部元素Mg和Ca的分布。我们发现Jania sp.高Mg方解石细胞壁纳米晶体呈层状排列,Mg含量交替变化。此外,我们发现这种非均匀的元素分布有助于藻类防止裂纹扩展引起的断裂。我们进一步发现,Jania sp.的每一个细胞壁纳米晶体都不是以前认为的单晶,而是由富镁方解石纳米颗粒组成,它们在层状结构中周期性地排列,显示出不同的晶体取向。我们还发现,这些富含镁元素的纳米颗粒存在于另一种珊瑚红藻(Corallina sp.)中,这表明了这种现象的普遍性。据我们所知,这是关于在珊瑚红藻矿化组织中存在富镁纳米粒子的第一份报告。我们设想,我们在藻类中发现的提高断裂韧性的生物策略的发现将对具有优越机械性能的结构的设计产生影响。意义声明:了解生物矿化组织的结构-性质关系对于揭示自然界的材料设计策略具有重要意义,这是开发新型结构材料的基础。珊瑚红藻骨骼部分的晶体学和元素变化及其对预防机械故障的累积贡献尚未得到充分研究。本文揭示了Jania sp.的高镁方解石细胞壁纳米晶体在Mg浓度交替的情况下呈层状排列,这种组织有利于裂纹偏转,从而防止灾难性断裂。我们进一步发现,纳米晶体含有不连贯的富镁纳米颗粒,并表明它们是通过Mg-ACC前体的spinodal分解形成的,并周期性地在藻类的矿化细胞壁上自我排列,这一现象最有可能在高mg方解石生物矿化中广泛存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural and Chemical Variations in the Skeletal Segments of Coralline Red Algae Lead to Improved Crack Resistance
Jania sp. is an articulated coralline red alga that is abundant in the shallow waters of oceans worldwide. We have previously demonstrated that its structure is highly intricate and exhibits hierarchical organization across multiple length scales from the macro to the nano scale. Moreover, we have proven that the inner pores of its structure are helical, conveying the alga greater compliance as compared to a cylindrical configuration. Herein, we reveal new insights on the structure of Jania sp., particularly on its crystallographic variations and the internal elemental distribution of Mg and Ca. We show that the high-Mg calcite cell wall nanocrystals of Jania sp. are arranged in layers with alternating Mg contents. Moreover, we show that this non-homogenous elemental distribution assists the alga in preventing fracture caused by crack propagation. We further discover that each one of the cell wall nanocrystals in Jania sp. is not a single crystal as was previously thought, but rather comprises Mg-rich calcite nanoparticles demonstrating various crystallographic orientations, arranged periodically within the layered structure. We also show that these Mg-rich nanoparticles are present in yet another species of the coralline red algae, Corallina sp., pointing to the generality of this phenomenon. To the best of our knowledge this is a first report on the existence of Mg-rich nanoparticles in the coralline red algae mineralized tissue. We envisage that our findings on the bio-strategy found in the alga to enhance the fracture toughness will have an impact on the design of structures with superior mechanical properties. Statement of Significance: Understanding the structure-property relation in biomineralized tissues is of great importance in unveiling Nature's material design strategies, which form the basis for the development of novel structural materials. Crystallographic and elemental variations in the skeletal parts of the coralline red algae and their cumulative contribution to prevention of mechanical failure are yet poorly studied. Herein, we reveal that the high-Mg calcite cell wall nanocrystals of Jania sp. are arranged in layers with alternating Mg concentrations and reveal that this organization facilitates crack deflection, thereby preventing catastrophic fracture. We further discovered that the nanocrystals contain incoherent Mg-rich nanoparticles and suggest that they form via spinodal decomposition of the Mg-ACC precursor and self-arrange periodically throughout the alga's mineralized cell wall, a phenomenon most likely to be widespread in high-Mg calcite biomineralization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Eutectic Solvent Assisted Facile and Efficient Synthesis of Nitrogen-Doped Magnetic Biochar for Hexavalent Chromium Elimination: Mechanism and Performance Insights Computational Simulation of Ionization Processes in Single-Bubble and Multi-Bubble Sonoluminescence Microbubbles for Effective Cleaning of Metal Surfaces Without Chemical Agents Unprecedented Age-Hardening and its Structural Requirement in a Severely Deformed Al-Cu-Mg Alloy Elucidating the Interaction of Enantiomeric Cu(Ii) Complexes with DNA, Rna and Hsa: A Comparative Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1