一种基于可能性模糊c均值聚类和布谷鸟搜索的混合核算法

V. D. Do, L. Ngo, D. Mai
{"title":"一种基于可能性模糊c均值聚类和布谷鸟搜索的混合核算法","authors":"V. D. Do, L. Ngo, D. Mai","doi":"10.1109/RIVF51545.2021.9642080","DOIUrl":null,"url":null,"abstract":"Possibilistic Fuzzy c-means (PFCM) algorithm is a robustness clustering algorithm that combines two algorithms, Fuzzy c-means (FCM) and Possibilistic c-means (PCM). It addresses the weakness of FCM in handling noise sensitivity and the weakness of PCM within the case of coincidence clusters. However, PFCM works inefficiently when the input data is nonlinear separable. To solve this problem, kernel methods have been introduced into possibilistic fuzzy c-means clustering (KPFCM). KPFCM can address noises or outliers data better than PFCM. But KPFCM suffers from a common drawback of clustering algorithms that may be trapped in local minimum which results in not good results. Recently, Cuckoo search (CS) based clustering has proved to achieve fascinating results. It can achieve the best global solution compared to most other metaheuristics. In this paper, we propose a hybrid method encompassing KPFCM and Cuckoo search algorithm to form the proposed KPFCM-CSA. The experimental results indicate that the proposed method outperformed various well-known recent clustering algorithms in terms of clustering quality.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid kernel-based possibilistic fuzzy c-means clustering and cuckoo search algorithm\",\"authors\":\"V. D. Do, L. Ngo, D. Mai\",\"doi\":\"10.1109/RIVF51545.2021.9642080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Possibilistic Fuzzy c-means (PFCM) algorithm is a robustness clustering algorithm that combines two algorithms, Fuzzy c-means (FCM) and Possibilistic c-means (PCM). It addresses the weakness of FCM in handling noise sensitivity and the weakness of PCM within the case of coincidence clusters. However, PFCM works inefficiently when the input data is nonlinear separable. To solve this problem, kernel methods have been introduced into possibilistic fuzzy c-means clustering (KPFCM). KPFCM can address noises or outliers data better than PFCM. But KPFCM suffers from a common drawback of clustering algorithms that may be trapped in local minimum which results in not good results. Recently, Cuckoo search (CS) based clustering has proved to achieve fascinating results. It can achieve the best global solution compared to most other metaheuristics. In this paper, we propose a hybrid method encompassing KPFCM and Cuckoo search algorithm to form the proposed KPFCM-CSA. The experimental results indicate that the proposed method outperformed various well-known recent clustering algorithms in terms of clustering quality.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可能性模糊c均值(PFCM)算法是一种结合模糊c均值(FCM)和可能性c均值(PCM)两种算法的鲁棒聚类算法。它解决了FCM在处理噪声敏感性方面的弱点和PCM在符合簇的情况下的弱点。然而,当输入数据是非线性可分时,PFCM的工作效率不高。为了解决这一问题,在可能性模糊c均值聚类(KPFCM)中引入了核方法。与PFCM相比,KPFCM可以更好地处理噪声或异常值数据。但KPFCM存在聚类算法的一个共同缺点,即可能陷入局部最小值,从而导致效果不佳。近年来,基于布谷鸟搜索(CS)的聚类已被证明取得了令人着迷的结果。与大多数其他元启发式相比,它可以实现最佳的全局解决方案。在本文中,我们提出了一种结合KPFCM和布谷鸟搜索算法的混合方法,形成了KPFCM- csa。实验结果表明,该方法在聚类质量方面优于当前各种知名的聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid kernel-based possibilistic fuzzy c-means clustering and cuckoo search algorithm
Possibilistic Fuzzy c-means (PFCM) algorithm is a robustness clustering algorithm that combines two algorithms, Fuzzy c-means (FCM) and Possibilistic c-means (PCM). It addresses the weakness of FCM in handling noise sensitivity and the weakness of PCM within the case of coincidence clusters. However, PFCM works inefficiently when the input data is nonlinear separable. To solve this problem, kernel methods have been introduced into possibilistic fuzzy c-means clustering (KPFCM). KPFCM can address noises or outliers data better than PFCM. But KPFCM suffers from a common drawback of clustering algorithms that may be trapped in local minimum which results in not good results. Recently, Cuckoo search (CS) based clustering has proved to achieve fascinating results. It can achieve the best global solution compared to most other metaheuristics. In this paper, we propose a hybrid method encompassing KPFCM and Cuckoo search algorithm to form the proposed KPFCM-CSA. The experimental results indicate that the proposed method outperformed various well-known recent clustering algorithms in terms of clustering quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Image Watermarking Scheme Using LU Decomposition Streaming Algorithm for Submodular Cover Problem Under Noise Hand part segmentations in hand mask of egocentric images using Distance Transformation Map and SVM Classifier Multiple Imputation by Generative Adversarial Networks for Classification with Incomplete Data MC-OCR Challenge 2021: Simple approach for receipt information extraction and quality evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1