纳米银掺杂ZnO光催化降解亚甲基蓝的研究

M. S. Azmina, R. Nor, H. A. Rafaie, A. Fairus, Z. Osman
{"title":"纳米银掺杂ZnO光催化降解亚甲基蓝的研究","authors":"M. S. Azmina, R. Nor, H. A. Rafaie, A. Fairus, Z. Osman","doi":"10.17576/mjas-2018-2202-12","DOIUrl":null,"url":null,"abstract":"Pure and Ag doped ZnO nanoparticles were synthesized on microscopic sand particles by sol-gel method. Silver nitrate was used as the doping precursor, Ag doping levels of 1.3 to 7.7 of Ag/Zn ratios were obtained based on energy dispersive X-ray spectroscopy analysis. X-ray diffraction results show that a ZnO (101) peak of Ag doped samples are shifted towards lower degree which around 0.17 compared to pure ZnO NPs, indicating the existence of doping in the Ag doped samples. The pure and Ag doped ZnO samples were used as photocatalysts in the degradation of methylene blue under UV irradiation. Photodegradation efficiency based on the pseudo-first kinetics model gave measured values of the photodegradation rate, k of 8.9, 11.8, 12.7, 14.8 and 17.4 x 10 min for pure, 1.3, 1.6, 1.7 and 2.4 of Ag/Zn ratios, respectively. At higher doping levels of 3.3 and 7.7 of Ag/Zn ratios, the k values receded to 12.7 and 12.0 x 10 min, respectively. The increasing trend on k values can be due to the doping defect levels which trapped the recombining electrons, thus lengthening the lifetime of the electron hole pairs.","PeriodicalId":22844,"journal":{"name":"The Malaysian Journal of Analytical Sciences","volume":"49 1","pages":"270-278"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Photocatalytic degradation of methylene blue with silver doped ZnO nanoparticles grown on microscopic sand particles.\",\"authors\":\"M. S. Azmina, R. Nor, H. A. Rafaie, A. Fairus, Z. Osman\",\"doi\":\"10.17576/mjas-2018-2202-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pure and Ag doped ZnO nanoparticles were synthesized on microscopic sand particles by sol-gel method. Silver nitrate was used as the doping precursor, Ag doping levels of 1.3 to 7.7 of Ag/Zn ratios were obtained based on energy dispersive X-ray spectroscopy analysis. X-ray diffraction results show that a ZnO (101) peak of Ag doped samples are shifted towards lower degree which around 0.17 compared to pure ZnO NPs, indicating the existence of doping in the Ag doped samples. The pure and Ag doped ZnO samples were used as photocatalysts in the degradation of methylene blue under UV irradiation. Photodegradation efficiency based on the pseudo-first kinetics model gave measured values of the photodegradation rate, k of 8.9, 11.8, 12.7, 14.8 and 17.4 x 10 min for pure, 1.3, 1.6, 1.7 and 2.4 of Ag/Zn ratios, respectively. At higher doping levels of 3.3 and 7.7 of Ag/Zn ratios, the k values receded to 12.7 and 12.0 x 10 min, respectively. The increasing trend on k values can be due to the doping defect levels which trapped the recombining electrons, thus lengthening the lifetime of the electron hole pairs.\",\"PeriodicalId\":22844,\"journal\":{\"name\":\"The Malaysian Journal of Analytical Sciences\",\"volume\":\"49 1\",\"pages\":\"270-278\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Malaysian Journal of Analytical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17576/mjas-2018-2202-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Malaysian Journal of Analytical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17576/mjas-2018-2202-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photocatalytic degradation of methylene blue with silver doped ZnO nanoparticles grown on microscopic sand particles.
Pure and Ag doped ZnO nanoparticles were synthesized on microscopic sand particles by sol-gel method. Silver nitrate was used as the doping precursor, Ag doping levels of 1.3 to 7.7 of Ag/Zn ratios were obtained based on energy dispersive X-ray spectroscopy analysis. X-ray diffraction results show that a ZnO (101) peak of Ag doped samples are shifted towards lower degree which around 0.17 compared to pure ZnO NPs, indicating the existence of doping in the Ag doped samples. The pure and Ag doped ZnO samples were used as photocatalysts in the degradation of methylene blue under UV irradiation. Photodegradation efficiency based on the pseudo-first kinetics model gave measured values of the photodegradation rate, k of 8.9, 11.8, 12.7, 14.8 and 17.4 x 10 min for pure, 1.3, 1.6, 1.7 and 2.4 of Ag/Zn ratios, respectively. At higher doping levels of 3.3 and 7.7 of Ag/Zn ratios, the k values receded to 12.7 and 12.0 x 10 min, respectively. The increasing trend on k values can be due to the doping defect levels which trapped the recombining electrons, thus lengthening the lifetime of the electron hole pairs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Validation method for extraction and determination of marbofloxacin in plasma and edible chicken tissues Polymeric films as matrixes for the immobilization of mixed natural dyes for optical ph sensor Analisis kandungan kepekatan logam berat dalam air balast dan air laut di pelabuhan tanjung pelepas Penggunaan pelarut eutektik dalam (DES) sebagai porogen dalam fabrikasi turus kapilari monolitik polimerik Aktinobakteria psikrotoleran Barrientosiimonas humi 39T sebagai sumber sebatian diketopiperazin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1