{"title":"纳米CdO-ZnO含量对环氧复合材料结构、热学、光学、力学和电学性能的影响","authors":"C. Srikanth, G. Madhu","doi":"10.55713/jmmm.v33i2.1590","DOIUrl":null,"url":null,"abstract":"Cadmium oxide doped zinc oxide nanoparticles were synthesized by solution combustion technique. CdO-ZnO nanoparticles were reinforced into epoxy by ultrasonication technique. CdO-ZnO nano-particles are well known semiconducting materials which are found to exhibit excellent semiconducting behavior even at high frequencies. Hence it was introduced into epoxy to study the semiconducting nature of CdO-ZnO/epoxy composites. The polymer composites exhibited interesting phenomenon such as minimum heat losses at high frequencies indicating semi-conducting behaviour of the composites. The polymer composite was also analysed for its structural, thermal, optical and mechanical properties. The enhanced interaction of CdO-ZnO nanoparticles with epoxy has resulted in superior UV-shielding effeciency and mechanical properties. This paper mainly focusses upon the synthesis and development of CdO-ZnO/epoxy composites, the design and optimization of CdO-ZnO compositions, the mechanical toughening and failure mechanism, transport mechanism of charge carriers, conductivity relaxation, ionic polarization and prospects of CdO-ZnO/epoxy composites in various fields.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of nano CdO-ZnO content on structural, thermal, optical, mechanical and electrical properties of epoxy composites\",\"authors\":\"C. Srikanth, G. Madhu\",\"doi\":\"10.55713/jmmm.v33i2.1590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cadmium oxide doped zinc oxide nanoparticles were synthesized by solution combustion technique. CdO-ZnO nanoparticles were reinforced into epoxy by ultrasonication technique. CdO-ZnO nano-particles are well known semiconducting materials which are found to exhibit excellent semiconducting behavior even at high frequencies. Hence it was introduced into epoxy to study the semiconducting nature of CdO-ZnO/epoxy composites. The polymer composites exhibited interesting phenomenon such as minimum heat losses at high frequencies indicating semi-conducting behaviour of the composites. The polymer composite was also analysed for its structural, thermal, optical and mechanical properties. The enhanced interaction of CdO-ZnO nanoparticles with epoxy has resulted in superior UV-shielding effeciency and mechanical properties. This paper mainly focusses upon the synthesis and development of CdO-ZnO/epoxy composites, the design and optimization of CdO-ZnO compositions, the mechanical toughening and failure mechanism, transport mechanism of charge carriers, conductivity relaxation, ionic polarization and prospects of CdO-ZnO/epoxy composites in various fields.\",\"PeriodicalId\":16459,\"journal\":{\"name\":\"Journal of metals, materials and minerals\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of metals, materials and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55713/jmmm.v33i2.1590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v33i2.1590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of nano CdO-ZnO content on structural, thermal, optical, mechanical and electrical properties of epoxy composites
Cadmium oxide doped zinc oxide nanoparticles were synthesized by solution combustion technique. CdO-ZnO nanoparticles were reinforced into epoxy by ultrasonication technique. CdO-ZnO nano-particles are well known semiconducting materials which are found to exhibit excellent semiconducting behavior even at high frequencies. Hence it was introduced into epoxy to study the semiconducting nature of CdO-ZnO/epoxy composites. The polymer composites exhibited interesting phenomenon such as minimum heat losses at high frequencies indicating semi-conducting behaviour of the composites. The polymer composite was also analysed for its structural, thermal, optical and mechanical properties. The enhanced interaction of CdO-ZnO nanoparticles with epoxy has resulted in superior UV-shielding effeciency and mechanical properties. This paper mainly focusses upon the synthesis and development of CdO-ZnO/epoxy composites, the design and optimization of CdO-ZnO compositions, the mechanical toughening and failure mechanism, transport mechanism of charge carriers, conductivity relaxation, ionic polarization and prospects of CdO-ZnO/epoxy composites in various fields.
期刊介绍:
Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.