{"title":"恶魔","authors":"Yu Xu, Jianguo Yao, Yaozu Dong, Kun Tian, Xiao Zheng, Haibing Guan","doi":"10.1145/3296975.3186416","DOIUrl":null,"url":null,"abstract":"Memory Management Units (MMUs) for on-device address translation are widely used in modern devices. However, conventional solutions for on-device MMU virtualization, such as shadow page table implemented in mediated pass-through, still suffer from high complexity and low performance.\n We present Demon, an efficient solution for on-DEvice MMU virtualizatiON in mediated pass-through. The key insight is that Demon takes advantage of IOMMU to construct a two-dimensional address translation and dynamically switches the 2nd-dimensional page table to a proper candidate when the device owner switches. In order to support fine-grained parallelism for the device with multiple engines, we put forward a hardware proposal that separates the address space of each engine and enables simultaneous device address remapping for multiple virtual machines (VMs). We implement Demon with a prototype named gDemon which virtualizes Intel GPU MMU. Nonetheless, Demon is not limited to this particular case. Evaluations show that gDemon provides up to 19.73x better performance in the media transcoding workloads and achieves performance improvement of up to 17.09% and 13.73% in the 2D benchmarks and 3D benchmarks, respectively, compared with gVirt. The current release of gDemon scales up to 6 VMs with moderate performance in our experiments. In addition, gDemon simplifies the implementation of GPU MMU virtualization with 37% code reduction.","PeriodicalId":50923,"journal":{"name":"ACM Sigplan Notices","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demon\",\"authors\":\"Yu Xu, Jianguo Yao, Yaozu Dong, Kun Tian, Xiao Zheng, Haibing Guan\",\"doi\":\"10.1145/3296975.3186416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memory Management Units (MMUs) for on-device address translation are widely used in modern devices. However, conventional solutions for on-device MMU virtualization, such as shadow page table implemented in mediated pass-through, still suffer from high complexity and low performance.\\n We present Demon, an efficient solution for on-DEvice MMU virtualizatiON in mediated pass-through. The key insight is that Demon takes advantage of IOMMU to construct a two-dimensional address translation and dynamically switches the 2nd-dimensional page table to a proper candidate when the device owner switches. In order to support fine-grained parallelism for the device with multiple engines, we put forward a hardware proposal that separates the address space of each engine and enables simultaneous device address remapping for multiple virtual machines (VMs). We implement Demon with a prototype named gDemon which virtualizes Intel GPU MMU. Nonetheless, Demon is not limited to this particular case. Evaluations show that gDemon provides up to 19.73x better performance in the media transcoding workloads and achieves performance improvement of up to 17.09% and 13.73% in the 2D benchmarks and 3D benchmarks, respectively, compared with gVirt. The current release of gDemon scales up to 6 VMs with moderate performance in our experiments. In addition, gDemon simplifies the implementation of GPU MMU virtualization with 37% code reduction.\",\"PeriodicalId\":50923,\"journal\":{\"name\":\"ACM Sigplan Notices\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Sigplan Notices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3296975.3186416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigplan Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3296975.3186416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Memory Management Units (MMUs) for on-device address translation are widely used in modern devices. However, conventional solutions for on-device MMU virtualization, such as shadow page table implemented in mediated pass-through, still suffer from high complexity and low performance.
We present Demon, an efficient solution for on-DEvice MMU virtualizatiON in mediated pass-through. The key insight is that Demon takes advantage of IOMMU to construct a two-dimensional address translation and dynamically switches the 2nd-dimensional page table to a proper candidate when the device owner switches. In order to support fine-grained parallelism for the device with multiple engines, we put forward a hardware proposal that separates the address space of each engine and enables simultaneous device address remapping for multiple virtual machines (VMs). We implement Demon with a prototype named gDemon which virtualizes Intel GPU MMU. Nonetheless, Demon is not limited to this particular case. Evaluations show that gDemon provides up to 19.73x better performance in the media transcoding workloads and achieves performance improvement of up to 17.09% and 13.73% in the 2D benchmarks and 3D benchmarks, respectively, compared with gVirt. The current release of gDemon scales up to 6 VMs with moderate performance in our experiments. In addition, gDemon simplifies the implementation of GPU MMU virtualization with 37% code reduction.
期刊介绍:
The ACM Special Interest Group on Programming Languages explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users. SIGPLAN sponsors several major annual conferences, including the Symposium on Principles of Programming Languages (POPL), the Symposium on Principles and Practice of Parallel Programming (PPoPP), the Conference on Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), as well as more than a dozen other events of either smaller size or in-cooperation with other SIGs. The monthly "ACM SIGPLAN Notices" publishes proceedings of selected sponsored events and an annual report on SIGPLAN activities. Members receive discounts on conference registrations and free access to ACM SIGPLAN publications in the ACM Digital Library. SIGPLAN recognizes significant research and service contributions of individuals with a variety of awards, supports current members through the Professional Activities Committee, and encourages future programming language enthusiasts with frequent Programming Languages Mentoring Workshops (PLMW).