基因分析应用程序的优化

B. A. Wade, Krishnendu Ghosh, P. Tonellato
{"title":"基因分析应用程序的优化","authors":"B. A. Wade, Krishnendu Ghosh, P. Tonellato","doi":"10.1163/157404006777491927","DOIUrl":null,"url":null,"abstract":"MetaGene is a software environment for gene analysis developed at the Bioinformatics Research Center, Medical College of Wisconsin. In this work, a new neural network optimization module is developed to enhance the prediction of gene features developed by MetaGene. The input of the neural network consists of gene feature predictions from several gene analysis engines used by MetaGene. When compared, these predictions are often in conflict. The output from the neural net is a synthesis of these individual predictions taking into account the degree of conflict detected. This optimized prediction provides a more accurate answer when compared to the default prediction of MetaGene or any single prediction engine's solution.","PeriodicalId":101169,"journal":{"name":"Soft Computing Letters","volume":"94 1 1","pages":"81-88"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of a Gene Analysis Application\",\"authors\":\"B. A. Wade, Krishnendu Ghosh, P. Tonellato\",\"doi\":\"10.1163/157404006777491927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MetaGene is a software environment for gene analysis developed at the Bioinformatics Research Center, Medical College of Wisconsin. In this work, a new neural network optimization module is developed to enhance the prediction of gene features developed by MetaGene. The input of the neural network consists of gene feature predictions from several gene analysis engines used by MetaGene. When compared, these predictions are often in conflict. The output from the neural net is a synthesis of these individual predictions taking into account the degree of conflict detected. This optimized prediction provides a more accurate answer when compared to the default prediction of MetaGene or any single prediction engine's solution.\",\"PeriodicalId\":101169,\"journal\":{\"name\":\"Soft Computing Letters\",\"volume\":\"94 1 1\",\"pages\":\"81-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Computing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1163/157404006777491927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Computing Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/157404006777491927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

MetaGene是一个由威斯康星医学院生物信息学研究中心开发的基因分析软件环境。在这项工作中,开发了一个新的神经网络优化模块来增强MetaGene开发的基因特征的预测。神经网络的输入由MetaGene使用的几个基因分析引擎的基因特征预测组成。相比之下,这些预测往往是相互冲突的。考虑到检测到的冲突程度,神经网络的输出是这些个体预测的综合。与MetaGene的默认预测或任何单一预测引擎的解决方案相比,这种优化的预测提供了更准确的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of a Gene Analysis Application
MetaGene is a software environment for gene analysis developed at the Bioinformatics Research Center, Medical College of Wisconsin. In this work, a new neural network optimization module is developed to enhance the prediction of gene features developed by MetaGene. The input of the neural network consists of gene feature predictions from several gene analysis engines used by MetaGene. When compared, these predictions are often in conflict. The output from the neural net is a synthesis of these individual predictions taking into account the degree of conflict detected. This optimized prediction provides a more accurate answer when compared to the default prediction of MetaGene or any single prediction engine's solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Socio-cultural inspired Metaheuristics A fuzzy optimization model for methane gas production from municipal solid waste A fuzzy proximity relation approach for outlier detection in the mixed dataset by using rough entropy-based weighted density method Analysis of French phonetic idiosyncrasies for accent recognition An ensemble machine learning model for the prediction of danger zones: Towards a global counter-terrorism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1