{"title":"分组密码的混合方法","authors":"R. Chitrakar, Roshan Bhusal, Prajwol Maharjan","doi":"10.5772/INTECHOPEN.82272","DOIUrl":null,"url":null,"abstract":"This chapter introduces two new approaches to block cipher — one is DNA hybridization encryption scheme (DHES) and the other is hybrid graphical encryption algorithm (HGEA). DNA cryptography deals with the techniques of hiding messages in the form of a DNA sequence. The key size of data encryption standard (DES) can be increased by using DHES. In DHES, DNA cryptography algorithm is used for encryption and decryption, and one-time pad (OTP) scheme is used for key generation. The output of DES algorithm is passed as an input to DNA hybridization scheme to provide an added security. The second approach, HGEA, is based on graphical pattern recognition. By performing multiple transformations, shifting and logical operations, a block cipher is obtained. This algorithm is influenced by hybrid cubes encryption algorithm (HiSea). Features like graphical interpretation and computation of selected quadrant value are the unique features of HGEA. Moreover, multiple key generation scheme combined with graphical interpretation method provides an increased level of security.","PeriodicalId":47430,"journal":{"name":"International Journal of Computer Science and Network Security","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Approaches to Block Cipher\",\"authors\":\"R. Chitrakar, Roshan Bhusal, Prajwol Maharjan\",\"doi\":\"10.5772/INTECHOPEN.82272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter introduces two new approaches to block cipher — one is DNA hybridization encryption scheme (DHES) and the other is hybrid graphical encryption algorithm (HGEA). DNA cryptography deals with the techniques of hiding messages in the form of a DNA sequence. The key size of data encryption standard (DES) can be increased by using DHES. In DHES, DNA cryptography algorithm is used for encryption and decryption, and one-time pad (OTP) scheme is used for key generation. The output of DES algorithm is passed as an input to DNA hybridization scheme to provide an added security. The second approach, HGEA, is based on graphical pattern recognition. By performing multiple transformations, shifting and logical operations, a block cipher is obtained. This algorithm is influenced by hybrid cubes encryption algorithm (HiSea). Features like graphical interpretation and computation of selected quadrant value are the unique features of HGEA. Moreover, multiple key generation scheme combined with graphical interpretation method provides an increased level of security.\",\"PeriodicalId\":47430,\"journal\":{\"name\":\"International Journal of Computer Science and Network Security\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Science and Network Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.82272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Science and Network Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.82272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter introduces two new approaches to block cipher — one is DNA hybridization encryption scheme (DHES) and the other is hybrid graphical encryption algorithm (HGEA). DNA cryptography deals with the techniques of hiding messages in the form of a DNA sequence. The key size of data encryption standard (DES) can be increased by using DHES. In DHES, DNA cryptography algorithm is used for encryption and decryption, and one-time pad (OTP) scheme is used for key generation. The output of DES algorithm is passed as an input to DNA hybridization scheme to provide an added security. The second approach, HGEA, is based on graphical pattern recognition. By performing multiple transformations, shifting and logical operations, a block cipher is obtained. This algorithm is influenced by hybrid cubes encryption algorithm (HiSea). Features like graphical interpretation and computation of selected quadrant value are the unique features of HGEA. Moreover, multiple key generation scheme combined with graphical interpretation method provides an increased level of security.