分组密码的混合方法

R. Chitrakar, Roshan Bhusal, Prajwol Maharjan
{"title":"分组密码的混合方法","authors":"R. Chitrakar, Roshan Bhusal, Prajwol Maharjan","doi":"10.5772/INTECHOPEN.82272","DOIUrl":null,"url":null,"abstract":"This chapter introduces two new approaches to block cipher — one is DNA hybridization encryption scheme (DHES) and the other is hybrid graphical encryption algorithm (HGEA). DNA cryptography deals with the techniques of hiding messages in the form of a DNA sequence. The key size of data encryption standard (DES) can be increased by using DHES. In DHES, DNA cryptography algorithm is used for encryption and decryption, and one-time pad (OTP) scheme is used for key generation. The output of DES algorithm is passed as an input to DNA hybridization scheme to provide an added security. The second approach, HGEA, is based on graphical pattern recognition. By performing multiple transformations, shifting and logical operations, a block cipher is obtained. This algorithm is influenced by hybrid cubes encryption algorithm (HiSea). Features like graphical interpretation and computation of selected quadrant value are the unique features of HGEA. Moreover, multiple key generation scheme combined with graphical interpretation method provides an increased level of security.","PeriodicalId":47430,"journal":{"name":"International Journal of Computer Science and Network Security","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Approaches to Block Cipher\",\"authors\":\"R. Chitrakar, Roshan Bhusal, Prajwol Maharjan\",\"doi\":\"10.5772/INTECHOPEN.82272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter introduces two new approaches to block cipher — one is DNA hybridization encryption scheme (DHES) and the other is hybrid graphical encryption algorithm (HGEA). DNA cryptography deals with the techniques of hiding messages in the form of a DNA sequence. The key size of data encryption standard (DES) can be increased by using DHES. In DHES, DNA cryptography algorithm is used for encryption and decryption, and one-time pad (OTP) scheme is used for key generation. The output of DES algorithm is passed as an input to DNA hybridization scheme to provide an added security. The second approach, HGEA, is based on graphical pattern recognition. By performing multiple transformations, shifting and logical operations, a block cipher is obtained. This algorithm is influenced by hybrid cubes encryption algorithm (HiSea). Features like graphical interpretation and computation of selected quadrant value are the unique features of HGEA. Moreover, multiple key generation scheme combined with graphical interpretation method provides an increased level of security.\",\"PeriodicalId\":47430,\"journal\":{\"name\":\"International Journal of Computer Science and Network Security\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Science and Network Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.82272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Science and Network Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.82272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了分组密码的两种新方法——DNA杂交加密方案(DHES)和混合图形加密算法(HGEA)。DNA密码学研究的是以DNA序列的形式隐藏信息的技术。使用DES可以增大数据加密标准(DES)的密钥大小。在dhs中,加密和解密采用DNA加密算法,密钥生成采用一次性填充(OTP)方案。DES算法的输出作为输入传递给DNA杂交方案,以提供额外的安全性。第二种方法是基于图形模式识别的HGEA。通过多次变换、移位和逻辑运算,得到分组密码。该算法受混合立方体加密算法(HiSea)的影响。图形解释和所选象限值的计算等特征是HGEA的独特之处。此外,多密钥生成方案与图形解释方法相结合,提高了安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Approaches to Block Cipher
This chapter introduces two new approaches to block cipher — one is DNA hybridization encryption scheme (DHES) and the other is hybrid graphical encryption algorithm (HGEA). DNA cryptography deals with the techniques of hiding messages in the form of a DNA sequence. The key size of data encryption standard (DES) can be increased by using DHES. In DHES, DNA cryptography algorithm is used for encryption and decryption, and one-time pad (OTP) scheme is used for key generation. The output of DES algorithm is passed as an input to DNA hybridization scheme to provide an added security. The second approach, HGEA, is based on graphical pattern recognition. By performing multiple transformations, shifting and logical operations, a block cipher is obtained. This algorithm is influenced by hybrid cubes encryption algorithm (HiSea). Features like graphical interpretation and computation of selected quadrant value are the unique features of HGEA. Moreover, multiple key generation scheme combined with graphical interpretation method provides an increased level of security.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Modern Information and Communication Technologies on Economic Security in the Context of COVID-19 Information and Communication Technologies for the Innovative Development of Tourism Training in the Context of COVID-19 A Portable IoT-cloud ECG Monitoring System for Healthcare Information and Legal Aspects of Economic Development in the Conditions of COVID-19 Measuring and Evaluating the Work-Related Stress of Nurses in Saudi Arabia during the Covid-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1