会话式机器阅读理解的一种新颖的端到端框架

Xiao Zhang, Heyan Huang, Zewen Chi, Xian-Ling Mao
{"title":"会话式机器阅读理解的一种新颖的端到端框架","authors":"Xiao Zhang, Heyan Huang, Zewen Chi, Xian-Ling Mao","doi":"10.48550/arXiv.2209.11484","DOIUrl":null,"url":null,"abstract":"Conversational machine reading comprehension (CMRC) aims to assist computers to understand an natural language text and thereafter engage in a multi-turn conversation to answer questions related to the text. Existing methods typically require three steps: (1) decision making based on entailment reasoning; (2) span extraction if required by the above decision; (3) question rephrasing based on the extracted span. However, for nearly all these methods, the span extraction and question rephrasing steps cannot fully exploit the fine-grained entailment reasoning information in decision making step because of their relative independence, which will further enlarge the information gap between decision making and question phrasing. Thus, to tackle this problem, we propose a novel end-to-end framework for conversational machine reading comprehension based on shared parameter mechanism, called entailment reasoning T5 (ET5). Despite the lightweight of our proposed framework, experimental results show that the proposed ET5 achieves new state-of-the-art results on the ShARC leaderboard with the BLEU-4 score of 55.2. Our model and code are publicly available.","PeriodicalId":91381,"journal":{"name":"Proceedings of COLING. International Conference on Computational Linguistics","volume":"95 1","pages":"570-579"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ET5: A Novel End-to-end Framework for Conversational Machine Reading Comprehension\",\"authors\":\"Xiao Zhang, Heyan Huang, Zewen Chi, Xian-Ling Mao\",\"doi\":\"10.48550/arXiv.2209.11484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conversational machine reading comprehension (CMRC) aims to assist computers to understand an natural language text and thereafter engage in a multi-turn conversation to answer questions related to the text. Existing methods typically require three steps: (1) decision making based on entailment reasoning; (2) span extraction if required by the above decision; (3) question rephrasing based on the extracted span. However, for nearly all these methods, the span extraction and question rephrasing steps cannot fully exploit the fine-grained entailment reasoning information in decision making step because of their relative independence, which will further enlarge the information gap between decision making and question phrasing. Thus, to tackle this problem, we propose a novel end-to-end framework for conversational machine reading comprehension based on shared parameter mechanism, called entailment reasoning T5 (ET5). Despite the lightweight of our proposed framework, experimental results show that the proposed ET5 achieves new state-of-the-art results on the ShARC leaderboard with the BLEU-4 score of 55.2. Our model and code are publicly available.\",\"PeriodicalId\":91381,\"journal\":{\"name\":\"Proceedings of COLING. International Conference on Computational Linguistics\",\"volume\":\"95 1\",\"pages\":\"570-579\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of COLING. International Conference on Computational Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.11484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of COLING. International Conference on Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.11484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对话式机器阅读理解(CMRC)旨在帮助计算机理解自然语言文本,然后进行多回合对话以回答与文本相关的问题。现有方法通常需要三个步骤:(1)基于蕴涵推理的决策;(2)根据上述决定要求提取跨度;(3)基于提取的跨度改写问题。然而,在几乎所有这些方法中,跨度提取和问题改写步骤由于其相对独立性,无法充分挖掘决策步骤中细粒度的蕴涵推理信息,这将进一步扩大决策与问题措辞之间的信息差距。因此,为了解决这个问题,我们提出了一个基于共享参数机制的会话机器阅读理解的新型端到端框架,称为蕴涵推理T5 (ET5)。尽管我们提出的框架很轻,但实验结果表明,提出的ET5在ShARC排行榜上取得了新的最先进的结果,BLEU-4得分为55.2。我们的模型和代码是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ET5: A Novel End-to-end Framework for Conversational Machine Reading Comprehension
Conversational machine reading comprehension (CMRC) aims to assist computers to understand an natural language text and thereafter engage in a multi-turn conversation to answer questions related to the text. Existing methods typically require three steps: (1) decision making based on entailment reasoning; (2) span extraction if required by the above decision; (3) question rephrasing based on the extracted span. However, for nearly all these methods, the span extraction and question rephrasing steps cannot fully exploit the fine-grained entailment reasoning information in decision making step because of their relative independence, which will further enlarge the information gap between decision making and question phrasing. Thus, to tackle this problem, we propose a novel end-to-end framework for conversational machine reading comprehension based on shared parameter mechanism, called entailment reasoning T5 (ET5). Despite the lightweight of our proposed framework, experimental results show that the proposed ET5 achieves new state-of-the-art results on the ShARC leaderboard with the BLEU-4 score of 55.2. Our model and code are publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Hierarchical Reasoning Chains by Linking Discourse Units and Key Phrases for Reading Comprehension Event Causality Extraction with Event Argument Correlations BERT-Flow-VAE: A Weakly-supervised Model for Multi-Label Text Classification TestAug: A Framework for Augmenting Capability-based NLP Tests Multilingual Word Sense Disambiguation with Unified Sense Representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1