具有连续发射分布的马尔可夫模型的识别与验证

A. Friebe, A. Papadopoulos, T. Nolte
{"title":"具有连续发射分布的马尔可夫模型的识别与验证","authors":"A. Friebe, A. Papadopoulos, T. Nolte","doi":"10.1109/RTCSA50079.2020.9203594","DOIUrl":null,"url":null,"abstract":"It has been shown that in some robotic applications, where the execution times cannot be assumed to be independent and identically distributed, a Markov Chain with discrete emission distributions can be an appropriate model. In this paper we investigate whether execution times can be modeled as a Markov Chain with continuous Gaussian emission distributions. The main advantage of this approach is that the concept of distance is naturally incorporated. We propose a framework based on Hidden Markov Model (HMM) methods that 1) identifies the number of states in the Markov Model from observations and fits the Markov Model to observations, and 2) validates the proposed model with respect to observations. Specifically, we apply a tree-based cross-validation approach to automatically find a suitable number of states in the Markov model. The estimated models are validated against observations, using a data consistency approach based on log likelihood distributions under the proposed model. The framework is evaluated using two test cases executed on a Raspberry Pi Model 3B+ single-board computer running Arch Linux ARM patched with PREEMPT_RT. The first is a simple test program where execution times intentionally vary according to a Markov model, and the second is a video decompression using the ffmpeg program. The results show that in these cases the framework identifies Markov Chains with Gaussian emission distributions that are valid models with respect to the observations.","PeriodicalId":38446,"journal":{"name":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","volume":"36 1","pages":"1-10"},"PeriodicalIF":0.5000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Identification and Validation of Markov Models with Continuous Emission Distributions for Execution Times\",\"authors\":\"A. Friebe, A. Papadopoulos, T. Nolte\",\"doi\":\"10.1109/RTCSA50079.2020.9203594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been shown that in some robotic applications, where the execution times cannot be assumed to be independent and identically distributed, a Markov Chain with discrete emission distributions can be an appropriate model. In this paper we investigate whether execution times can be modeled as a Markov Chain with continuous Gaussian emission distributions. The main advantage of this approach is that the concept of distance is naturally incorporated. We propose a framework based on Hidden Markov Model (HMM) methods that 1) identifies the number of states in the Markov Model from observations and fits the Markov Model to observations, and 2) validates the proposed model with respect to observations. Specifically, we apply a tree-based cross-validation approach to automatically find a suitable number of states in the Markov model. The estimated models are validated against observations, using a data consistency approach based on log likelihood distributions under the proposed model. The framework is evaluated using two test cases executed on a Raspberry Pi Model 3B+ single-board computer running Arch Linux ARM patched with PREEMPT_RT. The first is a simple test program where execution times intentionally vary according to a Markov model, and the second is a video decompression using the ffmpeg program. The results show that in these cases the framework identifies Markov Chains with Gaussian emission distributions that are valid models with respect to the observations.\",\"PeriodicalId\":38446,\"journal\":{\"name\":\"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)\",\"volume\":\"36 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTCSA50079.2020.9203594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTCSA50079.2020.9203594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 4

摘要

研究表明,在某些机器人应用中,当执行时间不能假设为独立且同分布时,具有离散发射分布的马尔可夫链可以作为合适的模型。本文研究了执行时间是否可以用具有连续高斯发射分布的马尔可夫链来建模。这种方法的主要优点是自然地包含了距离的概念。我们提出了一个基于隐马尔可夫模型(HMM)方法的框架,该框架1)从观测中识别马尔可夫模型中的状态数,并将马尔可夫模型拟合到观测值中,2)根据观测值验证所提出的模型。具体来说,我们应用基于树的交叉验证方法来自动找到马尔可夫模型中合适数量的状态。使用基于所提出模型下的对数似然分布的数据一致性方法,根据观测值对估计模型进行验证。该框架使用两个测试用例在Raspberry Pi Model 3B+单板计算机上执行,运行带有PREEMPT_RT补丁的Arch Linux ARM。第一个是一个简单的测试程序,其中执行时间会根据马尔可夫模型而有所不同,第二个是使用ffmpeg程序的视频解压缩。结果表明,在这些情况下,框架识别出具有高斯发射分布的马尔可夫链,这是相对于观测的有效模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification and Validation of Markov Models with Continuous Emission Distributions for Execution Times
It has been shown that in some robotic applications, where the execution times cannot be assumed to be independent and identically distributed, a Markov Chain with discrete emission distributions can be an appropriate model. In this paper we investigate whether execution times can be modeled as a Markov Chain with continuous Gaussian emission distributions. The main advantage of this approach is that the concept of distance is naturally incorporated. We propose a framework based on Hidden Markov Model (HMM) methods that 1) identifies the number of states in the Markov Model from observations and fits the Markov Model to observations, and 2) validates the proposed model with respect to observations. Specifically, we apply a tree-based cross-validation approach to automatically find a suitable number of states in the Markov model. The estimated models are validated against observations, using a data consistency approach based on log likelihood distributions under the proposed model. The framework is evaluated using two test cases executed on a Raspberry Pi Model 3B+ single-board computer running Arch Linux ARM patched with PREEMPT_RT. The first is a simple test program where execution times intentionally vary according to a Markov model, and the second is a video decompression using the ffmpeg program. The results show that in these cases the framework identifies Markov Chains with Gaussian emission distributions that are valid models with respect to the observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
14.30%
发文量
17
期刊最新文献
Agnostic Hardware-Accelerated Operating System for Low-End IoT Controlling High-Performance Platform Uncertainties with Timing Diversity The Role of Causality in a Formal Definition of Timing Anomalies Analyzing Fixed Task Priority Based Memory Centric Scheduler for the 3-Phase Task Model On the Trade-offs between Generalization and Specialization in Real-Time Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1