a位修饰对钛酸钙结构和微波介电性能的影响

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of metals, materials and minerals Pub Date : 2022-09-30 DOI:10.55713/jmmm.v32i3.1525
S. Rajput, S. Keshri
{"title":"a位修饰对钛酸钙结构和微波介电性能的影响","authors":"S. Rajput, S. Keshri","doi":"10.55713/jmmm.v32i3.1525","DOIUrl":null,"url":null,"abstract":"This article presents studies on characteristics properties of CaTiO3, Ca0.8Sr0.2TiO3, and Ca0.6La0.8/3TiO3 ceramics. These ceramics were synthesized using the solid-state reaction process. Structural examination revealed that the grown ceramics have an orthorhombic structure with the Pbnm space group. The random distribution of particle size was shown through morphological investigation. Apparent density of developed ceramics was determined using the Archimedes technique and found to be ˂ 90%. The microwave dielectric properties of grown ceramics are compared on the basis of ionic polarizability. It is observed that partial replacement of Ca-ions by Sr-ions provides a high permittivity value (er = 168.93), higher quality factor Q × f = 9,330 GHz), and enhanced positive temperature coefficient of resonant frequency (tf  =  908.17). However, the substitution of Ca-ions by La-ions offers a low permittivity value (113.35), higher quality factor (16,730 GHz), and decreased temperature coefficient of resonant frequency (229.49 ppm/°C). These materials can be used with the ceramics possessing a negative temperature coefficient of resonant frequency to balance its tf- value nearly to zero.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"125 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of A-site modification on structural and microwave dielectric properties of calcium titanate\",\"authors\":\"S. Rajput, S. Keshri\",\"doi\":\"10.55713/jmmm.v32i3.1525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents studies on characteristics properties of CaTiO3, Ca0.8Sr0.2TiO3, and Ca0.6La0.8/3TiO3 ceramics. These ceramics were synthesized using the solid-state reaction process. Structural examination revealed that the grown ceramics have an orthorhombic structure with the Pbnm space group. The random distribution of particle size was shown through morphological investigation. Apparent density of developed ceramics was determined using the Archimedes technique and found to be ˂ 90%. The microwave dielectric properties of grown ceramics are compared on the basis of ionic polarizability. It is observed that partial replacement of Ca-ions by Sr-ions provides a high permittivity value (er = 168.93), higher quality factor Q × f = 9,330 GHz), and enhanced positive temperature coefficient of resonant frequency (tf  =  908.17). However, the substitution of Ca-ions by La-ions offers a low permittivity value (113.35), higher quality factor (16,730 GHz), and decreased temperature coefficient of resonant frequency (229.49 ppm/°C). These materials can be used with the ceramics possessing a negative temperature coefficient of resonant frequency to balance its tf- value nearly to zero.\",\"PeriodicalId\":16459,\"journal\":{\"name\":\"Journal of metals, materials and minerals\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of metals, materials and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55713/jmmm.v32i3.1525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v32i3.1525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了CaTiO3、Ca0.8Sr0.2TiO3和Ca0.6La0.8/3TiO3陶瓷的特性。采用固相反应法合成了这些陶瓷。结构检测表明,所制得的陶瓷具有具有Pbnm空间基团的正交结构。通过形态学研究,发现了颗粒大小的随机分布。利用阿基米德技术测定了成熟陶瓷的表观密度,发现密度小于90%。在离子极化率的基础上,比较了生长陶瓷的微波介电性能。结果表明,sr离子部分取代ca离子可获得较高的介电常数值(er = 168.93),较高的品质因子Q × f = 9330 GHz)和较高的谐振频率正温度系数(tf = 908.17)。然而,用la离子替代ca离子具有较低的介电常数值(113.35),较高的质量因子(16,730 GHz)和较低的谐振频率温度系数(229.49 ppm/°C)。这些材料可以与具有负谐振频率温度系数的陶瓷一起使用,使其tf值接近于零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of A-site modification on structural and microwave dielectric properties of calcium titanate
This article presents studies on characteristics properties of CaTiO3, Ca0.8Sr0.2TiO3, and Ca0.6La0.8/3TiO3 ceramics. These ceramics were synthesized using the solid-state reaction process. Structural examination revealed that the grown ceramics have an orthorhombic structure with the Pbnm space group. The random distribution of particle size was shown through morphological investigation. Apparent density of developed ceramics was determined using the Archimedes technique and found to be ˂ 90%. The microwave dielectric properties of grown ceramics are compared on the basis of ionic polarizability. It is observed that partial replacement of Ca-ions by Sr-ions provides a high permittivity value (er = 168.93), higher quality factor Q × f = 9,330 GHz), and enhanced positive temperature coefficient of resonant frequency (tf  =  908.17). However, the substitution of Ca-ions by La-ions offers a low permittivity value (113.35), higher quality factor (16,730 GHz), and decreased temperature coefficient of resonant frequency (229.49 ppm/°C). These materials can be used with the ceramics possessing a negative temperature coefficient of resonant frequency to balance its tf- value nearly to zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
期刊最新文献
Photocatalytic degradation of ciprofloxacin drug utilizing novel PVDF/polyaniline/ lanthanum strontium manganate@Ag composites Dispersion mechanism of nanoparticles and its role on mechanical, thermal and electrical properties of epoxy nanocomposites - A Review Sustainable innovation in ballistic vest design: Exploration of polyurethane-coated hemp fabrics and reinforced sandwich epoxy composites against 9 mm and .40 S&W bullets Electrical and water resistance properties of conductive paste based on gold/silver composites Review of materials, functional components, fabrication technologies and assembling characteristics for polymer electrolyte membrane fuel cells (PEMFCs) – An update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1