小二次枝晶臂间距Al319 - T7B的热机械变形

H. Sehitoglu, Tracy J. Smith, H. Maier
{"title":"小二次枝晶臂间距Al319 - T7B的热机械变形","authors":"H. Sehitoglu, Tracy J. Smith, H. Maier","doi":"10.1520/STP15253S","DOIUrl":null,"url":null,"abstract":"Thermomechanical fatigue and isothermal deformation experiments were conducted on cast Al 319 alloys with small secondary arm spacings (SDAS) in the range of 25 to 35 μm. The alloy was studied in the overaged state designated as T7B. In the case of the T7B treatment the material possesses dimensional stability, but incurs considerable loss of strength with time and cyclic deformation at temperatures exceeding 250°C. A two-state variable unified constitutive model was developed to characterize the stress-strain response for the material. The model handles temperature and strain rate effects and captures the microstructurally induced changes on the stress-strain response. The thermomechanical fatigue response under in-phase (TMF IP) and out-of-phase (TMF OP) conditions was simulated and the material exhibited a decrease in the stress range by as much as 50% with continued cycling. The decrease in strength was attributed to the significant coarsening of the precipitates at high temperatures and was confirmed by transmission electron microscopy.","PeriodicalId":8583,"journal":{"name":"ASTM special technical publications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Thermo-mechanical Deformation of Al319 - T7B with Small Secondary Dendrite Arm Spacing\",\"authors\":\"H. Sehitoglu, Tracy J. Smith, H. Maier\",\"doi\":\"10.1520/STP15253S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermomechanical fatigue and isothermal deformation experiments were conducted on cast Al 319 alloys with small secondary arm spacings (SDAS) in the range of 25 to 35 μm. The alloy was studied in the overaged state designated as T7B. In the case of the T7B treatment the material possesses dimensional stability, but incurs considerable loss of strength with time and cyclic deformation at temperatures exceeding 250°C. A two-state variable unified constitutive model was developed to characterize the stress-strain response for the material. The model handles temperature and strain rate effects and captures the microstructurally induced changes on the stress-strain response. The thermomechanical fatigue response under in-phase (TMF IP) and out-of-phase (TMF OP) conditions was simulated and the material exhibited a decrease in the stress range by as much as 50% with continued cycling. The decrease in strength was attributed to the significant coarsening of the precipitates at high temperatures and was confirmed by transmission electron microscopy.\",\"PeriodicalId\":8583,\"journal\":{\"name\":\"ASTM special technical publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASTM special technical publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/STP15253S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTM special technical publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/STP15253S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

采用25 ~ 35 μm的小二次臂间距(SDAS)对铸态Al - 319合金进行了热疲劳和等温变形实验。在T7B过时效状态下对合金进行了研究。在T7B处理的情况下,材料具有尺寸稳定性,但随着时间的推移和温度超过250°C的循环变形,强度会发生相当大的损失。建立了表征材料应力应变响应的双状态变量统一本构模型。该模型处理了温度和应变率的影响,并捕获了微观结构引起的应力-应变响应变化。模拟了同相(TMF IP)和非相(TMF OP)条件下的热机械疲劳响应,随着循环的继续,材料的应力范围降低了50%。强度的降低是由于析出物在高温下显著变粗,并通过透射电镜证实了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermo-mechanical Deformation of Al319 - T7B with Small Secondary Dendrite Arm Spacing
Thermomechanical fatigue and isothermal deformation experiments were conducted on cast Al 319 alloys with small secondary arm spacings (SDAS) in the range of 25 to 35 μm. The alloy was studied in the overaged state designated as T7B. In the case of the T7B treatment the material possesses dimensional stability, but incurs considerable loss of strength with time and cyclic deformation at temperatures exceeding 250°C. A two-state variable unified constitutive model was developed to characterize the stress-strain response for the material. The model handles temperature and strain rate effects and captures the microstructurally induced changes on the stress-strain response. The thermomechanical fatigue response under in-phase (TMF IP) and out-of-phase (TMF OP) conditions was simulated and the material exhibited a decrease in the stress range by as much as 50% with continued cycling. The decrease in strength was attributed to the significant coarsening of the precipitates at high temperatures and was confirmed by transmission electron microscopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transmission Electron Microscopy Examinations of Metal-Oxide Interface of Zirconium-Based Alloys Irradiated in Halden Reactor-IFA-638 Translation of International Snow-Sports Equipment Standards into Injury-Prevention Practice Evaluation of Ski-Binding-Boot System Safety Using Torque Testing Influence of Sn on Deformation Mechanisms During Room Temperature Compression of Binary Zr–Sn Alloys Life Prediction Tool for Ceramic Matrix Composites at Elevated Temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1