{"title":"一种分别连续识别不同荧光信号H2S和Cys的双响应近红外荧光探针及其应用","authors":"Lisha Yue, Yin Ai, Gang Liu, Haichang Ding, S. Pu","doi":"10.2139/ssrn.4331007","DOIUrl":null,"url":null,"abstract":"Given the significant interactions between hydrogen sulfide (H2S) and cysteine (Cys) in organisms, a dual-site multi-purpose fluorescent probe (Cy-NP) for H2S and Cys was synthesized. Cy-NP is composed of two fluorophores: naphthalimide that emits in the visible region of 500-600 nm, and cyanine dye that emits in the NIR region of 700-800 nm. Cy-NP showed admirable sensitivity and selectivity for identifying H2S and Cys by fluorescent signals with limits of detection as low as 0.15 μM and 1.4 μM, respectively. Furthermore, other biological thiols (especially GSH and Hcy) showed no positive response to Cy-NP compared with H2S and Cys. The chemical mechanism of Cy-NP with H2S and Cys in DMF/PBS (1/1, v/v, pH = 7.4) solution was verified by HRMS and DFT calculations. Further, Cy-NP was successfully applied to monitor H2S released in raw meat and adapted to detect H2S and Cys in MCF-7 cells independently and continuously.","PeriodicalId":82956,"journal":{"name":"The Behavior analyst","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dual-response NIR fluorescent probe for separately and continuously recognizing H2S and Cys with different fluorescence signals and its applications.\",\"authors\":\"Lisha Yue, Yin Ai, Gang Liu, Haichang Ding, S. Pu\",\"doi\":\"10.2139/ssrn.4331007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the significant interactions between hydrogen sulfide (H2S) and cysteine (Cys) in organisms, a dual-site multi-purpose fluorescent probe (Cy-NP) for H2S and Cys was synthesized. Cy-NP is composed of two fluorophores: naphthalimide that emits in the visible region of 500-600 nm, and cyanine dye that emits in the NIR region of 700-800 nm. Cy-NP showed admirable sensitivity and selectivity for identifying H2S and Cys by fluorescent signals with limits of detection as low as 0.15 μM and 1.4 μM, respectively. Furthermore, other biological thiols (especially GSH and Hcy) showed no positive response to Cy-NP compared with H2S and Cys. The chemical mechanism of Cy-NP with H2S and Cys in DMF/PBS (1/1, v/v, pH = 7.4) solution was verified by HRMS and DFT calculations. Further, Cy-NP was successfully applied to monitor H2S released in raw meat and adapted to detect H2S and Cys in MCF-7 cells independently and continuously.\",\"PeriodicalId\":82956,\"journal\":{\"name\":\"The Behavior analyst\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Behavior analyst\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4331007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Behavior analyst","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4331007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A dual-response NIR fluorescent probe for separately and continuously recognizing H2S and Cys with different fluorescence signals and its applications.
Given the significant interactions between hydrogen sulfide (H2S) and cysteine (Cys) in organisms, a dual-site multi-purpose fluorescent probe (Cy-NP) for H2S and Cys was synthesized. Cy-NP is composed of two fluorophores: naphthalimide that emits in the visible region of 500-600 nm, and cyanine dye that emits in the NIR region of 700-800 nm. Cy-NP showed admirable sensitivity and selectivity for identifying H2S and Cys by fluorescent signals with limits of detection as low as 0.15 μM and 1.4 μM, respectively. Furthermore, other biological thiols (especially GSH and Hcy) showed no positive response to Cy-NP compared with H2S and Cys. The chemical mechanism of Cy-NP with H2S and Cys in DMF/PBS (1/1, v/v, pH = 7.4) solution was verified by HRMS and DFT calculations. Further, Cy-NP was successfully applied to monitor H2S released in raw meat and adapted to detect H2S and Cys in MCF-7 cells independently and continuously.