用于近红外发光测温的HPHT微金刚石中的镍相关中心

N. S. Kurochkin, V. Sychev, A. V. Gritsienko, D. Bi
{"title":"用于近红外发光测温的HPHT微金刚石中的镍相关中心","authors":"N. S. Kurochkin, V. Sychev, A. V. Gritsienko, D. Bi","doi":"10.1002/pssr.202300277","DOIUrl":null,"url":null,"abstract":"Nano‐ and microcrystals of diamond are attractive for optical thermometry applications and possess unique optical properties as well as high chemical stability and biocompatibility. For biological application there are interest of diamonds with color centers that emit in the biological transparency window. One such defect is nickel‐related color centers that radiate in the near‐infrared range (1.4‐eV Ni centers), but have not yet been sufficiently investigated. This study reports the optical characteristics of HPHT diamond microcrystals with average sizes of 4 μm and 30 μm containing 1.4‐eV Ni centers. The temperature dependence of the spectral and temporal properties of Ni center emissions in the range from room temperature to 85 °C was demonstrated and thereby the possibility of appliance these centers as temperature sensors. The relative temperature sensitivities of luminescence peak intensity and lifetime for Ni centers were found to be 1.3% K−1 and 0.42% K−1, respectively. Moreover, the temperature determination accuracy reached better than 1 K.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"102 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nickel‐related centers in HPHT microdiamonds for near‐infrared luminescent thermometry\",\"authors\":\"N. S. Kurochkin, V. Sychev, A. V. Gritsienko, D. Bi\",\"doi\":\"10.1002/pssr.202300277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nano‐ and microcrystals of diamond are attractive for optical thermometry applications and possess unique optical properties as well as high chemical stability and biocompatibility. For biological application there are interest of diamonds with color centers that emit in the biological transparency window. One such defect is nickel‐related color centers that radiate in the near‐infrared range (1.4‐eV Ni centers), but have not yet been sufficiently investigated. This study reports the optical characteristics of HPHT diamond microcrystals with average sizes of 4 μm and 30 μm containing 1.4‐eV Ni centers. The temperature dependence of the spectral and temporal properties of Ni center emissions in the range from room temperature to 85 °C was demonstrated and thereby the possibility of appliance these centers as temperature sensors. The relative temperature sensitivities of luminescence peak intensity and lifetime for Ni centers were found to be 1.3% K−1 and 0.42% K−1, respectively. Moreover, the temperature determination accuracy reached better than 1 K.This article is protected by copyright. All rights reserved.\",\"PeriodicalId\":20059,\"journal\":{\"name\":\"physica status solidi (RRL) – Rapid Research Letters\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"physica status solidi (RRL) – Rapid Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssr.202300277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (RRL) – Rapid Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssr.202300277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金刚石的纳米晶体和微晶体在光学测温应用中具有吸引力,具有独特的光学特性以及高化学稳定性和生物相容性。对于生物应用,人们对具有在生物透明窗口中发光的色心的金刚石感兴趣。其中一个缺陷是镍相关的色心,它在近红外范围内辐射(1.4 eV镍中心),但尚未得到充分的研究。本研究报道了平均尺寸为4 μm和30 μm的含1.4 eV Ni中心的HPHT金刚石微晶的光学特性。在室温至85°C范围内,Ni中心发射光谱和时间特性的温度依赖性得到了证明,从而证明了应用这些中心作为温度传感器的可能性。Ni中心发光峰强度和寿命的相对温度敏感度分别为1.3% K−1和0.42% K−1。测温精度达到1 K以上。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nickel‐related centers in HPHT microdiamonds for near‐infrared luminescent thermometry
Nano‐ and microcrystals of diamond are attractive for optical thermometry applications and possess unique optical properties as well as high chemical stability and biocompatibility. For biological application there are interest of diamonds with color centers that emit in the biological transparency window. One such defect is nickel‐related color centers that radiate in the near‐infrared range (1.4‐eV Ni centers), but have not yet been sufficiently investigated. This study reports the optical characteristics of HPHT diamond microcrystals with average sizes of 4 μm and 30 μm containing 1.4‐eV Ni centers. The temperature dependence of the spectral and temporal properties of Ni center emissions in the range from room temperature to 85 °C was demonstrated and thereby the possibility of appliance these centers as temperature sensors. The relative temperature sensitivities of luminescence peak intensity and lifetime for Ni centers were found to be 1.3% K−1 and 0.42% K−1, respectively. Moreover, the temperature determination accuracy reached better than 1 K.This article is protected by copyright. All rights reserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGaN/GaN Hybrid‐Nanostructure Light Emitting Diodes with Emission Wavelength Green and Beyond TiO2‐Based Schottky Diodes as Bidirectional Switches for Bipolar Resistive Memories Electronic, transport and optical properties of potential transparent conductive material Rb2Pb2O3 Low‐threshold Amplified Spontaneous Emission of Dion‐Jacobson Phase Perovskite Films Achieved by Tuning Diamine Cation Size Characteristics of Vertical Transistors on a GaN Substrate Fabricated via Na‐flux Method and Enlargement of the Substrate Surpassing 6 Inches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1