{"title":"确定加权不平衡数据的特征模式:碰撞损伤研究中胸腰椎骨折的特征选择研究","authors":"Paromita Nitu, P. Madiraju, F. Pintar","doi":"10.1109/IRI49571.2020.00028","DOIUrl":null,"url":null,"abstract":"In motor vehicle crash study, spine injury investigation has a greater impact due to the serious physical, mental and financial consequences. Even though spine fracture deteriorates the quality of life significantly, to the best of our knowledge, there is no study that searched for the exhaustive thoracolumbar spine fracture(TL-fx) feature space to discover potential feature pattern in the motivation of illustrating the increasing risk phenomenon as a function of vehicle model year. This study investigates National Automotive Sampling System Crashworthiness (NASS-CDS) database, year 2000 to 2015. Each year, approximately 4000 to 6000(weighted) occupants are diagnosed with one or multiple TL-fx in road crashes. Even though the TL-fx data support is less than 1.6%, a two-fold feature selection model in a combination of random forest and lift measure based Apriori algorithm generates insightful association rules yielding prominent feature patterns and promotes further investigation to build causal model for the TL-fx study.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":"18 1","pages":"142-147"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identifying Feature Pattern for Weighted Imbalance Data: A Feature Selection Study for Thoracolumbar Spine Fractures in Crash Injury Research\",\"authors\":\"Paromita Nitu, P. Madiraju, F. Pintar\",\"doi\":\"10.1109/IRI49571.2020.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In motor vehicle crash study, spine injury investigation has a greater impact due to the serious physical, mental and financial consequences. Even though spine fracture deteriorates the quality of life significantly, to the best of our knowledge, there is no study that searched for the exhaustive thoracolumbar spine fracture(TL-fx) feature space to discover potential feature pattern in the motivation of illustrating the increasing risk phenomenon as a function of vehicle model year. This study investigates National Automotive Sampling System Crashworthiness (NASS-CDS) database, year 2000 to 2015. Each year, approximately 4000 to 6000(weighted) occupants are diagnosed with one or multiple TL-fx in road crashes. Even though the TL-fx data support is less than 1.6%, a two-fold feature selection model in a combination of random forest and lift measure based Apriori algorithm generates insightful association rules yielding prominent feature patterns and promotes further investigation to build causal model for the TL-fx study.\",\"PeriodicalId\":93159,\"journal\":{\"name\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"volume\":\"18 1\",\"pages\":\"142-147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI49571.2020.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在机动车碰撞研究中,脊柱损伤的调查由于其严重的身体、精神和经济后果而具有较大的影响。尽管脊柱骨折会显著恶化生活质量,但据我们所知,目前还没有研究寻找穷举胸腰椎脊柱骨折(TL-fx)特征空间来发现潜在的特征模式,以说明风险增加现象作为汽车车型年的函数。本研究调查了2000年至2015年国家汽车抽样系统耐撞性(NASS-CDS)数据库。每年,约有4000至6000名(加权)乘员在道路交通事故中被诊断出患有一种或多种TL-fx。尽管TL-fx的数据支持度低于1.6%,但结合随机森林和基于提升测度的Apriori算法的双重特征选择模型产生了深刻的关联规则,产生了突出的特征模式,并促进了进一步的研究,为TL-fx的研究建立了因果模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Feature Pattern for Weighted Imbalance Data: A Feature Selection Study for Thoracolumbar Spine Fractures in Crash Injury Research
In motor vehicle crash study, spine injury investigation has a greater impact due to the serious physical, mental and financial consequences. Even though spine fracture deteriorates the quality of life significantly, to the best of our knowledge, there is no study that searched for the exhaustive thoracolumbar spine fracture(TL-fx) feature space to discover potential feature pattern in the motivation of illustrating the increasing risk phenomenon as a function of vehicle model year. This study investigates National Automotive Sampling System Crashworthiness (NASS-CDS) database, year 2000 to 2015. Each year, approximately 4000 to 6000(weighted) occupants are diagnosed with one or multiple TL-fx in road crashes. Even though the TL-fx data support is less than 1.6%, a two-fold feature selection model in a combination of random forest and lift measure based Apriori algorithm generates insightful association rules yielding prominent feature patterns and promotes further investigation to build causal model for the TL-fx study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation. Natural Language-based Integration of Online Review Datasets for Identification of Sex Trafficking Businesses. An Adaptive and Dynamic Biosensor Epidemic Model for COVID-19 Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery Latent Feature Modelling for Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1