一种基于极端学习机的混合式数据分类优化算法

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Turkish Journal of Electrical Engineering and Computer Sciences Pub Date : 2019-04-01 DOI:10.3906/ELK-1802-40
E. Sevinç, Tansel Dökeroglu
{"title":"一种基于极端学习机的混合式数据分类优化算法","authors":"E. Sevinç, Tansel Dökeroglu","doi":"10.3906/ELK-1802-40","DOIUrl":null,"url":null,"abstract":"Data classification is the process of organizing data by relevant categories. In this way, the data can be understood and used more efficiently by scientists. Numerous studies have been proposed in the literature for the problem of data classification. However, with recently introduced metaheuristics, it has continued to be riveting to revisit this classical problem and investigate the efficiency of new techniques. Teaching-learning-based optimization (TLBO) is a recent metaheuristic that has been reported to be very effective for combinatorial optimization problems. In this study, we propose a novel hybrid TLBO algorithm with extreme learning machines (ELM) for the solution of data classification problems. The proposed algorithm (TLBO-ELM) is tested on a set of UCI benchmark datasets. The performance of TLBO-ELM is observed to be competitive for both binary and multiclass data classification problems compared with state-of-the-art algorithms.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"28 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A novel hybrid teaching-learning-based optimization algorithm for the classification of data by using extreme learning machines\",\"authors\":\"E. Sevinç, Tansel Dökeroglu\",\"doi\":\"10.3906/ELK-1802-40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data classification is the process of organizing data by relevant categories. In this way, the data can be understood and used more efficiently by scientists. Numerous studies have been proposed in the literature for the problem of data classification. However, with recently introduced metaheuristics, it has continued to be riveting to revisit this classical problem and investigate the efficiency of new techniques. Teaching-learning-based optimization (TLBO) is a recent metaheuristic that has been reported to be very effective for combinatorial optimization problems. In this study, we propose a novel hybrid TLBO algorithm with extreme learning machines (ELM) for the solution of data classification problems. The proposed algorithm (TLBO-ELM) is tested on a set of UCI benchmark datasets. The performance of TLBO-ELM is observed to be competitive for both binary and multiclass data classification problems compared with state-of-the-art algorithms.\",\"PeriodicalId\":49410,\"journal\":{\"name\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3906/ELK-1802-40\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3906/ELK-1802-40","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 17

摘要

数据分类是将数据按相关的类别进行组织的过程。通过这种方式,科学家可以更有效地理解和使用数据。对于数据分类问题,文献中已经提出了大量的研究。然而,随着最近引入的元启发式,重新审视这个经典问题并研究新技术的效率继续受到关注。基于教学的优化(TLBO)是最近出现的一种元启发式算法,被认为对组合优化问题非常有效。在这项研究中,我们提出了一种新的混合TLBO算法与极限学习机(ELM)来解决数据分类问题。在一组UCI基准数据集上对该算法(TLBO-ELM)进行了测试。与最先进的算法相比,TLBO-ELM的性能在二进制和多类数据分类问题上都具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel hybrid teaching-learning-based optimization algorithm for the classification of data by using extreme learning machines
Data classification is the process of organizing data by relevant categories. In this way, the data can be understood and used more efficiently by scientists. Numerous studies have been proposed in the literature for the problem of data classification. However, with recently introduced metaheuristics, it has continued to be riveting to revisit this classical problem and investigate the efficiency of new techniques. Teaching-learning-based optimization (TLBO) is a recent metaheuristic that has been reported to be very effective for combinatorial optimization problems. In this study, we propose a novel hybrid TLBO algorithm with extreme learning machines (ELM) for the solution of data classification problems. The proposed algorithm (TLBO-ELM) is tested on a set of UCI benchmark datasets. The performance of TLBO-ELM is observed to be competitive for both binary and multiclass data classification problems compared with state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Turkish Journal of Electrical Engineering and Computer Sciences
Turkish Journal of Electrical Engineering and Computer Sciences COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
2.90
自引率
9.10%
发文量
95
审稿时长
6.9 months
期刊介绍: The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence. Contribution is open to researchers of all nationalities.
期刊最新文献
A comparative study of YOLO models and a transformer-based YOLOv5 model for mass detection in mammograms Feature selection optimization with filtering and wrapper methods: two disease classification cases New modified carrier-based level-shifted PWM control for NPC rectifiers considered for implementation in EV fast chargers FuzzyCSampling: A Hybrid fuzzy c-means clustering sampling strategy for imbalanced datasets A practical low-dimensional feature vector generation method based on wavelet transform for psychophysiological signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1