文本到文本序列生成的政治事件编码

Yaoyao Dai, Benjamin J. Radford, Andrew Halterman
{"title":"文本到文本序列生成的政治事件编码","authors":"Yaoyao Dai, Benjamin J. Radford, Andrew Halterman","doi":"10.18653/v1/2022.case-1.16","DOIUrl":null,"url":null,"abstract":"We report on the current status of an effort to produce political event data from unstructured text via a Transformer language model. Compelled by the current lack of publicly available and up-to-date event coding software, we seek to train a model that can produce structured political event records at the sentence level. Our approach differs from previous efforts in that we conceptualize this task as one of text-to-text sequence generation. We motivate this choice by outlining desirable properties of text generation models for the needs of event coding. To overcome the lack of sufficient training data, we also describe a method for generating synthetic text and event record pairs that we use to fit our model.","PeriodicalId":80307,"journal":{"name":"The Case manager","volume":"33 1 1","pages":"117-123"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Political Event Coding as Text-to-Text Sequence Generation\",\"authors\":\"Yaoyao Dai, Benjamin J. Radford, Andrew Halterman\",\"doi\":\"10.18653/v1/2022.case-1.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on the current status of an effort to produce political event data from unstructured text via a Transformer language model. Compelled by the current lack of publicly available and up-to-date event coding software, we seek to train a model that can produce structured political event records at the sentence level. Our approach differs from previous efforts in that we conceptualize this task as one of text-to-text sequence generation. We motivate this choice by outlining desirable properties of text generation models for the needs of event coding. To overcome the lack of sufficient training data, we also describe a method for generating synthetic text and event record pairs that we use to fit our model.\",\"PeriodicalId\":80307,\"journal\":{\"name\":\"The Case manager\",\"volume\":\"33 1 1\",\"pages\":\"117-123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Case manager\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.case-1.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Case manager","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.case-1.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们报告了通过Transformer语言模型从非结构化文本生成政治事件数据的工作的当前状态。由于目前缺乏公开可用的和最新的事件编码软件,我们寻求训练一个可以在句子级别生成结构化政治事件记录的模型。我们的方法不同于以前的工作,因为我们将此任务概念化为文本到文本序列生成之一。我们通过概述事件编码需要的文本生成模型的理想属性来激励这种选择。为了克服缺乏足够的训练数据,我们还描述了一种生成合成文本和事件记录对的方法,我们使用它们来拟合我们的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Political Event Coding as Text-to-Text Sequence Generation
We report on the current status of an effort to produce political event data from unstructured text via a Transformer language model. Compelled by the current lack of publicly available and up-to-date event coding software, we seek to train a model that can produce structured political event records at the sentence level. Our approach differs from previous efforts in that we conceptualize this task as one of text-to-text sequence generation. We motivate this choice by outlining desirable properties of text generation models for the needs of event coding. To overcome the lack of sufficient training data, we also describe a method for generating synthetic text and event record pairs that we use to fit our model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Drivers and scorecards to improve hypertension control in primary care practice: Recommendations from the HEARTS in the Americas Innovation Group. NLP4ITF @ Causal News Corpus 2022: Leveraging Linguistic Information for Event Causality Classification SPOCK @ Causal News Corpus 2022: Cause-Effect-Signal Span Detection Using Span-Based and Sequence Tagging Models CEIA-NLP at CASE 2022 Task 1: Protest News Detection for Portuguese Point cloud extraction of aircraft skin butt joint based on adaptive matching calibration algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1