Joy Sebastian Prakash Joseph Irudayaraj, Prakash Thanigainathan, M. Ramach, Karunanithi Rajamanickam
{"title":"以l -半胱氨酸为稳定剂的荧光Cd/Znse量子点的一锅化学合成及表征","authors":"Joy Sebastian Prakash Joseph Irudayaraj, Prakash Thanigainathan, M. Ramach, Karunanithi Rajamanickam","doi":"10.4172/2324-8777.1000246","DOIUrl":null,"url":null,"abstract":"Cd/ZnSe quantum dots (QDs) were synthesized in a wet chemical method by using a stabilizing agent L-cysteine. This facile synthesis does not require any high temperature or inert gas atmosphere. The synthesized QDs were characterized by using UV-Vis spectrophotometer, spetrofluorometer, fourier transform infrared (FT-IR) spectrometer, Fluorescence lifetime spectrometer, thermogravimetric analysis (TGA), powder x-ray diffraction, transmission electron microscopy and scanning electron microscopy. The synthesized QDs are spherical in shape with an average diameter of 4.78 nm and are readily soluble in water, making them biologically compatible. Further, the carboxyl and amine functional groups are accessible on the QDs’ surface. Thus, these QDs can be used as molecular imaging probes by anchoring targeting molecules by using the functional groups available on the surface of the QDs.","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":"17 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-pot Chemical Synthesis and Characterization of Fluorescent Cd/Znse Quantum Dots Using L-Cysteine as Stabilizing Agent\",\"authors\":\"Joy Sebastian Prakash Joseph Irudayaraj, Prakash Thanigainathan, M. Ramach, Karunanithi Rajamanickam\",\"doi\":\"10.4172/2324-8777.1000246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cd/ZnSe quantum dots (QDs) were synthesized in a wet chemical method by using a stabilizing agent L-cysteine. This facile synthesis does not require any high temperature or inert gas atmosphere. The synthesized QDs were characterized by using UV-Vis spectrophotometer, spetrofluorometer, fourier transform infrared (FT-IR) spectrometer, Fluorescence lifetime spectrometer, thermogravimetric analysis (TGA), powder x-ray diffraction, transmission electron microscopy and scanning electron microscopy. The synthesized QDs are spherical in shape with an average diameter of 4.78 nm and are readily soluble in water, making them biologically compatible. Further, the carboxyl and amine functional groups are accessible on the QDs’ surface. Thus, these QDs can be used as molecular imaging probes by anchoring targeting molecules by using the functional groups available on the surface of the QDs.\",\"PeriodicalId\":16457,\"journal\":{\"name\":\"Journal of Nanomaterials & Molecular Nanotechnology\",\"volume\":\"17 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanomaterials & Molecular Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2324-8777.1000246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials & Molecular Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2324-8777.1000246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
One-pot Chemical Synthesis and Characterization of Fluorescent Cd/Znse Quantum Dots Using L-Cysteine as Stabilizing Agent
Cd/ZnSe quantum dots (QDs) were synthesized in a wet chemical method by using a stabilizing agent L-cysteine. This facile synthesis does not require any high temperature or inert gas atmosphere. The synthesized QDs were characterized by using UV-Vis spectrophotometer, spetrofluorometer, fourier transform infrared (FT-IR) spectrometer, Fluorescence lifetime spectrometer, thermogravimetric analysis (TGA), powder x-ray diffraction, transmission electron microscopy and scanning electron microscopy. The synthesized QDs are spherical in shape with an average diameter of 4.78 nm and are readily soluble in water, making them biologically compatible. Further, the carboxyl and amine functional groups are accessible on the QDs’ surface. Thus, these QDs can be used as molecular imaging probes by anchoring targeting molecules by using the functional groups available on the surface of the QDs.