电活性聚合物薄膜中的电荷输运

A. Hillman, David C. Loveday, M. Swann, R. M. Eales, A. Hamnett, S. Higgins, S. Bruckenstein, C. Wilde
{"title":"电活性聚合物薄膜中的电荷输运","authors":"A. Hillman, David C. Loveday, M. Swann, R. M. Eales, A. Hamnett, S. Higgins, S. Bruckenstein, C. Wilde","doi":"10.1039/DC9898800151","DOIUrl":null,"url":null,"abstract":"The electrochemical quartz crystal microbalance (EQCM) and ellipsometry have been used to study directly the movement of ions and solvent into/out of electroactive polymer films. The systems studied were polyvinylferrocene (PVF), polybithiophene (PBT) and polythionine (PTh). The overall mass changes accompanying oxidation/reduction indicate that film sources of counter-ions (required to maintain electroneutrality) can be significant. The extent of participation of these species depends on the nature and concentration of the bathing electrolyte solution. In the case of PVF, optical data also indicate a structural change: reduced PVF appears to be a homogeneous compact film, whilst oxidised PVF+ is a more diffuse, inhomogeneous film, whose polymer content decreases with distance from the electrode. Voltammetric experiments at rapid (and in some cases even moderate) scan rates show that transport of mobile species can be quite slow. It was generally observed that ingress into the polymer was slower than egress of the same species from the polymer. Charged species, notably proton in hydrated systems, move faster than neutral species, such as solvent, due to the influence of the field.","PeriodicalId":12210,"journal":{"name":"Faraday Discussions of The Chemical Society","volume":"75 1","pages":"151-163"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Charge transport in electroactive polymer films\",\"authors\":\"A. Hillman, David C. Loveday, M. Swann, R. M. Eales, A. Hamnett, S. Higgins, S. Bruckenstein, C. Wilde\",\"doi\":\"10.1039/DC9898800151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrochemical quartz crystal microbalance (EQCM) and ellipsometry have been used to study directly the movement of ions and solvent into/out of electroactive polymer films. The systems studied were polyvinylferrocene (PVF), polybithiophene (PBT) and polythionine (PTh). The overall mass changes accompanying oxidation/reduction indicate that film sources of counter-ions (required to maintain electroneutrality) can be significant. The extent of participation of these species depends on the nature and concentration of the bathing electrolyte solution. In the case of PVF, optical data also indicate a structural change: reduced PVF appears to be a homogeneous compact film, whilst oxidised PVF+ is a more diffuse, inhomogeneous film, whose polymer content decreases with distance from the electrode. Voltammetric experiments at rapid (and in some cases even moderate) scan rates show that transport of mobile species can be quite slow. It was generally observed that ingress into the polymer was slower than egress of the same species from the polymer. Charged species, notably proton in hydrated systems, move faster than neutral species, such as solvent, due to the influence of the field.\",\"PeriodicalId\":12210,\"journal\":{\"name\":\"Faraday Discussions of The Chemical Society\",\"volume\":\"75 1\",\"pages\":\"151-163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions of The Chemical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/DC9898800151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions of The Chemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/DC9898800151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

利用电化学石英晶体微天平(EQCM)和椭偏仪直接研究了离子和溶剂进出电活性聚合物薄膜的运动。所研究的体系有聚乙烯二茂铁(PVF)、聚噻吩(PBT)和聚硫氨酸(PTh)。伴随氧化/还原的总体质量变化表明,反离子(维持电中性所必需的)的膜源可能是重要的。这些物种的参与程度取决于沐浴电解质溶液的性质和浓度。在PVF的情况下,光学数据也表明了结构变化:还原的PVF似乎是一个均匀的致密膜,而氧化的PVF+是一个更分散的,不均匀的膜,其聚合物含量随着与电极的距离而减少。快速(在某些情况下甚至是中等)扫描速率下的伏安实验表明,移动物种的迁移可能相当缓慢。通常观察到,进入聚合物的速度比同一物种从聚合物的速度慢。带电物质,特别是水合系统中的质子,由于磁场的影响,比中性物质(如溶剂)移动得快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Charge transport in electroactive polymer films
The electrochemical quartz crystal microbalance (EQCM) and ellipsometry have been used to study directly the movement of ions and solvent into/out of electroactive polymer films. The systems studied were polyvinylferrocene (PVF), polybithiophene (PBT) and polythionine (PTh). The overall mass changes accompanying oxidation/reduction indicate that film sources of counter-ions (required to maintain electroneutrality) can be significant. The extent of participation of these species depends on the nature and concentration of the bathing electrolyte solution. In the case of PVF, optical data also indicate a structural change: reduced PVF appears to be a homogeneous compact film, whilst oxidised PVF+ is a more diffuse, inhomogeneous film, whose polymer content decreases with distance from the electrode. Voltammetric experiments at rapid (and in some cases even moderate) scan rates show that transport of mobile species can be quite slow. It was generally observed that ingress into the polymer was slower than egress of the same species from the polymer. Charged species, notably proton in hydrated systems, move faster than neutral species, such as solvent, due to the influence of the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Solvation. List of Posters Energy and structure of the transition states in the reaction OH + CO → H + CO2 Transition-state control of product rotational distributions in H + RH → H2+ R reactions (RH = HCl, HBr, HI, CH4, C2H6, C3H8) Quantum-dynamical characterization of reactive transition states
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1