{"title":"基于负轴回归模型的产品销售评估","authors":"Reny Rian Marliana","doi":"10.31000/PRIMA.V3I1.648","DOIUrl":null,"url":null,"abstract":"AbstrakPenelitian bertujuan untuk membandingkan hasil penaksiran parameter model regresi binomial negative dengan model Poisson untuk underreported counts pada penelitian sebelumnya. Model regresi dibentuk pada data penjualan produk yang mengalami underreporting counts, akibat keterlambatan input data ke aplikasi penjualan produk (sales cycle). Pada penelitian sebelumnya, model yang digunakan merupakan gabungan antara distribusi Binomial dan distribusi Poisson. Parameter model regresi ditaksir menggunakan pendekatan Bayes dan simulasi Markov Chain Monte Carlo melalui Algoritma Gibbs Sampling. Hasil penaksiran menunjukkan adanya perbedaan antara banyaknya penjualan yang dilaporkan dengan banyaknya penjualan produk yang sebenarnya. Besar perbedaan tersebut merupakan banyaknya penjualan produk yang tidak terlaporkan. Pada penelitian lanjutan ini, model yang digunakan adalah Model Regresi Negatif Binomial. Parameter regresi ditaksir menggunakan metode Iterasi Newton Rapson. Hasil penaksiran menunjukkan selisih yang cukup besar dimana model Poisson untuk underreported counts lebih robust sesuai dengan komponen musiman yang ada.Kata Kunci: underreported, generalized poisson, negative binomial AbstractThe goal of study is to compare the parameters of the negative Binomial regression model and the Poisson Model for underreported counts in the previous study. A model is a regression model for the number of product sales that run ito underreporting counts, caused by a delay on input process to the product sales applications (called sales cycle). The model used in the previous study is a mixture of the poisson and the binomial distributions developed by Winkelmann (1996). The regression parameters are estimated by a Bayesian approach and Markov Chain Monte Carlo simulation using Gibbs sampling algorithm. The results show the difference between the actual number and the reported number. This difference is the number of unreported product sales. In this study, the model used is the negative binomial regression model. The regression parameters are estimated using Newton Rapson iteration method. The results show a big gap from the previous study. It means that the Poisson Model for underreported counts is more robust in accordance with the seasonal components.Keywords: underreported, generalized poisson, negative binomial","PeriodicalId":33718,"journal":{"name":"Prima Jurnal Pendidikan Matematika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PENAKSIRAN PENJUALAN PRODUK BERDASARKAN PENDEKATAN MODEL REGRESI NEGATIF BINOMIAL\",\"authors\":\"Reny Rian Marliana\",\"doi\":\"10.31000/PRIMA.V3I1.648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstrakPenelitian bertujuan untuk membandingkan hasil penaksiran parameter model regresi binomial negative dengan model Poisson untuk underreported counts pada penelitian sebelumnya. Model regresi dibentuk pada data penjualan produk yang mengalami underreporting counts, akibat keterlambatan input data ke aplikasi penjualan produk (sales cycle). Pada penelitian sebelumnya, model yang digunakan merupakan gabungan antara distribusi Binomial dan distribusi Poisson. Parameter model regresi ditaksir menggunakan pendekatan Bayes dan simulasi Markov Chain Monte Carlo melalui Algoritma Gibbs Sampling. Hasil penaksiran menunjukkan adanya perbedaan antara banyaknya penjualan yang dilaporkan dengan banyaknya penjualan produk yang sebenarnya. Besar perbedaan tersebut merupakan banyaknya penjualan produk yang tidak terlaporkan. Pada penelitian lanjutan ini, model yang digunakan adalah Model Regresi Negatif Binomial. Parameter regresi ditaksir menggunakan metode Iterasi Newton Rapson. Hasil penaksiran menunjukkan selisih yang cukup besar dimana model Poisson untuk underreported counts lebih robust sesuai dengan komponen musiman yang ada.Kata Kunci: underreported, generalized poisson, negative binomial AbstractThe goal of study is to compare the parameters of the negative Binomial regression model and the Poisson Model for underreported counts in the previous study. A model is a regression model for the number of product sales that run ito underreporting counts, caused by a delay on input process to the product sales applications (called sales cycle). The model used in the previous study is a mixture of the poisson and the binomial distributions developed by Winkelmann (1996). The regression parameters are estimated by a Bayesian approach and Markov Chain Monte Carlo simulation using Gibbs sampling algorithm. The results show the difference between the actual number and the reported number. This difference is the number of unreported product sales. In this study, the model used is the negative binomial regression model. The regression parameters are estimated using Newton Rapson iteration method. The results show a big gap from the previous study. It means that the Poisson Model for underreported counts is more robust in accordance with the seasonal components.Keywords: underreported, generalized poisson, negative binomial\",\"PeriodicalId\":33718,\"journal\":{\"name\":\"Prima Jurnal Pendidikan Matematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prima Jurnal Pendidikan Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31000/PRIMA.V3I1.648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prima Jurnal Pendidikan Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31000/PRIMA.V3I1.648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PENAKSIRAN PENJUALAN PRODUK BERDASARKAN PENDEKATAN MODEL REGRESI NEGATIF BINOMIAL
AbstrakPenelitian bertujuan untuk membandingkan hasil penaksiran parameter model regresi binomial negative dengan model Poisson untuk underreported counts pada penelitian sebelumnya. Model regresi dibentuk pada data penjualan produk yang mengalami underreporting counts, akibat keterlambatan input data ke aplikasi penjualan produk (sales cycle). Pada penelitian sebelumnya, model yang digunakan merupakan gabungan antara distribusi Binomial dan distribusi Poisson. Parameter model regresi ditaksir menggunakan pendekatan Bayes dan simulasi Markov Chain Monte Carlo melalui Algoritma Gibbs Sampling. Hasil penaksiran menunjukkan adanya perbedaan antara banyaknya penjualan yang dilaporkan dengan banyaknya penjualan produk yang sebenarnya. Besar perbedaan tersebut merupakan banyaknya penjualan produk yang tidak terlaporkan. Pada penelitian lanjutan ini, model yang digunakan adalah Model Regresi Negatif Binomial. Parameter regresi ditaksir menggunakan metode Iterasi Newton Rapson. Hasil penaksiran menunjukkan selisih yang cukup besar dimana model Poisson untuk underreported counts lebih robust sesuai dengan komponen musiman yang ada.Kata Kunci: underreported, generalized poisson, negative binomial AbstractThe goal of study is to compare the parameters of the negative Binomial regression model and the Poisson Model for underreported counts in the previous study. A model is a regression model for the number of product sales that run ito underreporting counts, caused by a delay on input process to the product sales applications (called sales cycle). The model used in the previous study is a mixture of the poisson and the binomial distributions developed by Winkelmann (1996). The regression parameters are estimated by a Bayesian approach and Markov Chain Monte Carlo simulation using Gibbs sampling algorithm. The results show the difference between the actual number and the reported number. This difference is the number of unreported product sales. In this study, the model used is the negative binomial regression model. The regression parameters are estimated using Newton Rapson iteration method. The results show a big gap from the previous study. It means that the Poisson Model for underreported counts is more robust in accordance with the seasonal components.Keywords: underreported, generalized poisson, negative binomial