由线圈和球体产生的电

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, APPLIED Technical Physics Pub Date : 2023-08-08 DOI:10.1103/physics.16.136
K. Wright
{"title":"由线圈和球体产生的电","authors":"K. Wright","doi":"10.1103/physics.16.136","DOIUrl":null,"url":null,"abstract":"A ir-conditioning units guzzle energy, such that—in the summer months—they come in first place for electricity use among household appliances. Now Teppei Yamada and his colleagues at the University of Tokyo have developed a material that could help reduce air-conditioning energy needs by turning waste heat from these systems into electricity [1]. The material could also be used in wearable devices that need to generate their own electricity. “Technologies that turn heat into electricity are in their beginning stages,” Yamada says. “Here for the first time, we do that using a [polymer] phase transition.”","PeriodicalId":783,"journal":{"name":"Technical Physics","volume":"98 4 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electricity Generated from Coils and Globules\",\"authors\":\"K. Wright\",\"doi\":\"10.1103/physics.16.136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A ir-conditioning units guzzle energy, such that—in the summer months—they come in first place for electricity use among household appliances. Now Teppei Yamada and his colleagues at the University of Tokyo have developed a material that could help reduce air-conditioning energy needs by turning waste heat from these systems into electricity [1]. The material could also be used in wearable devices that need to generate their own electricity. “Technologies that turn heat into electricity are in their beginning stages,” Yamada says. “Here for the first time, we do that using a [polymer] phase transition.”\",\"PeriodicalId\":783,\"journal\":{\"name\":\"Technical Physics\",\"volume\":\"98 4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physics.16.136\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physics.16.136","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

空调非常耗电,因此在夏季的几个月里,空调在家用电器的用电量中排名第一。现在,东京大学的Teppei Yamada和他的同事已经开发出一种材料,可以通过将这些系统中的废热转化为电能来帮助减少空调的能源需求[1]。这种材料也可以用于需要自己发电的可穿戴设备。山田说:“将热能转化为电能的技术还处于起步阶段。”“这是我们第一次使用[聚合物]相变来做到这一点。”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electricity Generated from Coils and Globules
A ir-conditioning units guzzle energy, such that—in the summer months—they come in first place for electricity use among household appliances. Now Teppei Yamada and his colleagues at the University of Tokyo have developed a material that could help reduce air-conditioning energy needs by turning waste heat from these systems into electricity [1]. The material could also be used in wearable devices that need to generate their own electricity. “Technologies that turn heat into electricity are in their beginning stages,” Yamada says. “Here for the first time, we do that using a [polymer] phase transition.”
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technical Physics
Technical Physics 物理-物理:应用
CiteScore
1.30
自引率
14.30%
发文量
139
审稿时长
3-6 weeks
期刊介绍: Technical Physics is a journal that contains practical information on all aspects of applied physics, especially instrumentation and measurement techniques. Particular emphasis is put on plasma physics and related fields such as studies of charged particles in electromagnetic fields, synchrotron radiation, electron and ion beams, gas lasers and discharges. Other journal topics are the properties of condensed matter, including semiconductors, superconductors, gases, liquids, and different materials.
期刊最新文献
Damage Resistance of Corundum Treated with Abrasive and Contact-Free Processing Mathematical Modeling of the Main Characteristics of Cold Field and Thermal Field Electron Cathodes of Scanning Electron Microscopes in the Study of Biological Samples Control of Fluid Flow Movement in Porous Medium with NMR-Relaxometry Method Localization and Charge State of Metal Ions in Carbon Nanostructures of Europium Bis-Phthalocyanine Pyrolysed Derivatives Investigation of the Emission Spectrum of a Fast Capillary Discharge in the “Water Window” Region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1