{"title":"形成多组分固溶合金的新机理和新准则","authors":"T. Fang","doi":"10.2139/ssrn.3855727","DOIUrl":null,"url":null,"abstract":"Abstract Some existing criteria for forming single-phase multicomponent solid-solution alloys (MCSSAs) are assessed, and a new criterion based on the topology of atomic packing is propounded. A new mechanism concerning the development of MCSSAs is posited, where the multicomponent effect in surface layer, reducing the surface free energy of nanocrystalline nucleus, plays a significant role. More reasonable interpretation regarding the phase stability of CoCrFeMnNi alloy annealed at different temperatures is provided.","PeriodicalId":18268,"journal":{"name":"Materials Engineering eJournal","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"New Mechanism and Criterion for Forming Multi-Component Solid-Solution Alloys\",\"authors\":\"T. Fang\",\"doi\":\"10.2139/ssrn.3855727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Some existing criteria for forming single-phase multicomponent solid-solution alloys (MCSSAs) are assessed, and a new criterion based on the topology of atomic packing is propounded. A new mechanism concerning the development of MCSSAs is posited, where the multicomponent effect in surface layer, reducing the surface free energy of nanocrystalline nucleus, plays a significant role. More reasonable interpretation regarding the phase stability of CoCrFeMnNi alloy annealed at different temperatures is provided.\",\"PeriodicalId\":18268,\"journal\":{\"name\":\"Materials Engineering eJournal\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Engineering eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3855727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3855727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Mechanism and Criterion for Forming Multi-Component Solid-Solution Alloys
Abstract Some existing criteria for forming single-phase multicomponent solid-solution alloys (MCSSAs) are assessed, and a new criterion based on the topology of atomic packing is propounded. A new mechanism concerning the development of MCSSAs is posited, where the multicomponent effect in surface layer, reducing the surface free energy of nanocrystalline nucleus, plays a significant role. More reasonable interpretation regarding the phase stability of CoCrFeMnNi alloy annealed at different temperatures is provided.