双极单通量量子脉冲序列加速量子比特控制

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2023-05-30 DOI:10.1088/2058-9565/acd9e6
V. Vozhakov, M. Bastrakova, N. Klenov, A. Satanin, I. Soloviev
{"title":"双极单通量量子脉冲序列加速量子比特控制","authors":"V. Vozhakov, M. Bastrakova, N. Klenov, A. Satanin, I. Soloviev","doi":"10.1088/2058-9565/acd9e6","DOIUrl":null,"url":null,"abstract":"The development of quantum computers based on superconductors requires the improvement of the qubit state control approach aimed at the increase of the hardware energy efficiency. A promising solution to this problem is the use of superconducting digital circuits operating with single-flux-quantum (SFQ) pulses, moving the qubit control system into the cold chamber. However, the qubit gate time under SFQ control is still longer than under conventional microwave driving. Here we introduce the bipolar SFQ pulse control based on ternary pulse sequences. We also develop a robust optimization algorithm for finding a sequence structure that minimizes the leakage of the transmon qubit state from the computational subspace. We show that the appropriate sequence can be found for arbitrary system parameters from the practical range. The proposed bipolar SFQ control reduces a single qubit gate time by halve compared to nowadays unipolar SFQ technique, while maintaining the gate fidelity over 99.99%.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"66 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Speeding up qubit control with bipolar single-flux-quantum pulse sequences\",\"authors\":\"V. Vozhakov, M. Bastrakova, N. Klenov, A. Satanin, I. Soloviev\",\"doi\":\"10.1088/2058-9565/acd9e6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of quantum computers based on superconductors requires the improvement of the qubit state control approach aimed at the increase of the hardware energy efficiency. A promising solution to this problem is the use of superconducting digital circuits operating with single-flux-quantum (SFQ) pulses, moving the qubit control system into the cold chamber. However, the qubit gate time under SFQ control is still longer than under conventional microwave driving. Here we introduce the bipolar SFQ pulse control based on ternary pulse sequences. We also develop a robust optimization algorithm for finding a sequence structure that minimizes the leakage of the transmon qubit state from the computational subspace. We show that the appropriate sequence can be found for arbitrary system parameters from the practical range. The proposed bipolar SFQ control reduces a single qubit gate time by halve compared to nowadays unipolar SFQ technique, while maintaining the gate fidelity over 99.99%.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/acd9e6\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/acd9e6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

基于超导体的量子计算机的发展要求改进量子比特状态控制方法,以提高硬件能效。解决这个问题的一个很有希望的方法是使用单通量量子(SFQ)脉冲操作的超导数字电路,将量子比特控制系统移动到冷室中。然而,在SFQ控制下的量子比特门时间仍然比传统的微波驱动下长。本文介绍了基于三元脉冲序列的双极SFQ脉冲控制。我们还开发了一种鲁棒优化算法,用于寻找一个序列结构,该序列结构可以最大限度地减少从计算子空间中泄漏的transmon量子位状态。我们证明了在实际范围内,对于任意系统参数都可以找到合适的序列。与目前的单极SFQ技术相比,所提出的双极SFQ控制将单个量子比特门时间减少了一半,同时保持门保真度超过99.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speeding up qubit control with bipolar single-flux-quantum pulse sequences
The development of quantum computers based on superconductors requires the improvement of the qubit state control approach aimed at the increase of the hardware energy efficiency. A promising solution to this problem is the use of superconducting digital circuits operating with single-flux-quantum (SFQ) pulses, moving the qubit control system into the cold chamber. However, the qubit gate time under SFQ control is still longer than under conventional microwave driving. Here we introduce the bipolar SFQ pulse control based on ternary pulse sequences. We also develop a robust optimization algorithm for finding a sequence structure that minimizes the leakage of the transmon qubit state from the computational subspace. We show that the appropriate sequence can be found for arbitrary system parameters from the practical range. The proposed bipolar SFQ control reduces a single qubit gate time by halve compared to nowadays unipolar SFQ technique, while maintaining the gate fidelity over 99.99%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
Near-optimal quantum kernel principal component analysis Bayesian optimization for state engineering of quantum gases Ramsey interferometry of nuclear spins in diamond using stimulated Raman adiabatic passage Reducing measurement costs by recycling the Hessian in adaptive variational quantum algorithms Permutation-equivariant quantum convolutional neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1