采用多相催化剂的好氧甘油氧化工艺综述:生产二羟基丙酮的可持续途径

Pedro M. Walgode, R. Faria, A. Rodrigues
{"title":"采用多相催化剂的好氧甘油氧化工艺综述:生产二羟基丙酮的可持续途径","authors":"Pedro M. Walgode, R. Faria, A. Rodrigues","doi":"10.1080/01614940.2020.1747253","DOIUrl":null,"url":null,"abstract":"ABSTRACT The world’s biodiesel increasing production is leading to the accumulation of its main by-product, crude glycerol, with almost no economic value, which valorization is crucial to increase biodiesel production sustainability and competitiveness. Glycerol is a potential platform chemical, with several valorization routes identified. Among them, selective catalytic aerobic oxidation is an attractive and sustainable solution, as high added value products ensure the process robustness against raw material price fluctuations. When glycerol’s secondary hydroxyl group is selectively oxidized, dihydroxyacetone (DHA) is obtained. DHA is a high added value compound, used in cosmetics as the active compound in sunless skin tanning lotions, and its current industrial production by bio-fermentation is not satisfactory; therefore a more efficient production process is needed to overcome the market deficit. The state-of-the-art of DHA production by glycerol aerobic catalytic oxidation in the liquid phase with water as solvent was reviewed and, although it is still in the lab-scale phase, some routes to reach a robust commercial application were already suggested. For DHA production, catalysts should be active under base free conditions, in order to achieve high DHA selectivity. Promoted Pt nanoparticles, as Pt-Bi and Pt-Sb supported in carbon and mesoporous materials, and Au nanoparticles, supported late transition metal oxides as Au/CuO and Au/ZnO, are among the most promising catalysts for high DHA yield processes. For a better understanding of the main variables associated with this process, the effect of catalyst support, particle size, preparation and activation methods, and catalyst deactivation problems were analyzed. In addition, the reaction conditions effect in catalyst performance, including the presence of crude glycerol impurities was considered. Finally, the main studies regarding DHA continuous flow production were reviewed, identifying the major obstacles to overcome, so that commercial DHA production processes through glycerol aerobic catalytic oxidation can finally be implemented.","PeriodicalId":9647,"journal":{"name":"Catalysis Reviews","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"A review of aerobic glycerol oxidation processes using heterogeneous catalysts: a sustainable pathway for the production of dihydroxyacetone\",\"authors\":\"Pedro M. Walgode, R. Faria, A. Rodrigues\",\"doi\":\"10.1080/01614940.2020.1747253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The world’s biodiesel increasing production is leading to the accumulation of its main by-product, crude glycerol, with almost no economic value, which valorization is crucial to increase biodiesel production sustainability and competitiveness. Glycerol is a potential platform chemical, with several valorization routes identified. Among them, selective catalytic aerobic oxidation is an attractive and sustainable solution, as high added value products ensure the process robustness against raw material price fluctuations. When glycerol’s secondary hydroxyl group is selectively oxidized, dihydroxyacetone (DHA) is obtained. DHA is a high added value compound, used in cosmetics as the active compound in sunless skin tanning lotions, and its current industrial production by bio-fermentation is not satisfactory; therefore a more efficient production process is needed to overcome the market deficit. The state-of-the-art of DHA production by glycerol aerobic catalytic oxidation in the liquid phase with water as solvent was reviewed and, although it is still in the lab-scale phase, some routes to reach a robust commercial application were already suggested. For DHA production, catalysts should be active under base free conditions, in order to achieve high DHA selectivity. Promoted Pt nanoparticles, as Pt-Bi and Pt-Sb supported in carbon and mesoporous materials, and Au nanoparticles, supported late transition metal oxides as Au/CuO and Au/ZnO, are among the most promising catalysts for high DHA yield processes. For a better understanding of the main variables associated with this process, the effect of catalyst support, particle size, preparation and activation methods, and catalyst deactivation problems were analyzed. In addition, the reaction conditions effect in catalyst performance, including the presence of crude glycerol impurities was considered. Finally, the main studies regarding DHA continuous flow production were reviewed, identifying the major obstacles to overcome, so that commercial DHA production processes through glycerol aerobic catalytic oxidation can finally be implemented.\",\"PeriodicalId\":9647,\"journal\":{\"name\":\"Catalysis Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01614940.2020.1747253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01614940.2020.1747253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

随着世界生物柴油产量的不断增加,其主要副产品粗甘油的积累几乎没有任何经济价值,而粗甘油的增值对提高生物柴油生产的可持续性和竞争力至关重要。甘油是一种潜在的平台化学物质,已经确定了几种增值途径。其中,选择性催化好氧氧化是一种有吸引力且可持续的解决方案,因为高附加值的产品确保了工艺对原材料价格波动的稳健性。当甘油的仲羟基被选择性氧化时,得到二羟基丙酮(DHA)。DHA是一种高附加值的化合物,在化妆品中作为防晒乳液的活性化合物使用,目前生物发酵的工业生产效果不理想;因此,需要一个更有效的生产过程来克服市场赤字。本文综述了以水为溶剂的甘油好氧催化氧化法在液相中生产DHA的最新技术,尽管该技术仍处于实验室规模阶段,但已经提出了一些实现强大商业应用的途径。对于DHA的生产,催化剂必须在无碱条件下具有活性,以达到高的DHA选择性。在碳和介孔材料中负载Pt- bi和Pt- sb的促进型Pt纳米颗粒,以及负载晚过渡金属氧化物Au/CuO和Au/ZnO的Au纳米颗粒,是高DHA产率过程中最有前途的催化剂。为了更好地了解与该过程相关的主要变量,分析了催化剂载体、粒径、制备和活化方法以及催化剂失活问题的影响。此外,还考虑了反应条件对催化剂性能的影响,包括粗甘油杂质的存在。最后,对DHA连续流生产的主要研究进行了综述,指出了需要克服的主要障碍,以便最终实现甘油好氧催化氧化的商业化DHA生产工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of aerobic glycerol oxidation processes using heterogeneous catalysts: a sustainable pathway for the production of dihydroxyacetone
ABSTRACT The world’s biodiesel increasing production is leading to the accumulation of its main by-product, crude glycerol, with almost no economic value, which valorization is crucial to increase biodiesel production sustainability and competitiveness. Glycerol is a potential platform chemical, with several valorization routes identified. Among them, selective catalytic aerobic oxidation is an attractive and sustainable solution, as high added value products ensure the process robustness against raw material price fluctuations. When glycerol’s secondary hydroxyl group is selectively oxidized, dihydroxyacetone (DHA) is obtained. DHA is a high added value compound, used in cosmetics as the active compound in sunless skin tanning lotions, and its current industrial production by bio-fermentation is not satisfactory; therefore a more efficient production process is needed to overcome the market deficit. The state-of-the-art of DHA production by glycerol aerobic catalytic oxidation in the liquid phase with water as solvent was reviewed and, although it is still in the lab-scale phase, some routes to reach a robust commercial application were already suggested. For DHA production, catalysts should be active under base free conditions, in order to achieve high DHA selectivity. Promoted Pt nanoparticles, as Pt-Bi and Pt-Sb supported in carbon and mesoporous materials, and Au nanoparticles, supported late transition metal oxides as Au/CuO and Au/ZnO, are among the most promising catalysts for high DHA yield processes. For a better understanding of the main variables associated with this process, the effect of catalyst support, particle size, preparation and activation methods, and catalyst deactivation problems were analyzed. In addition, the reaction conditions effect in catalyst performance, including the presence of crude glycerol impurities was considered. Finally, the main studies regarding DHA continuous flow production were reviewed, identifying the major obstacles to overcome, so that commercial DHA production processes through glycerol aerobic catalytic oxidation can finally be implemented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unimolecular and bimolecular reactions of organic intermediates on metal oxide catalysts: an update Advancements and Perspective of Environmentally Sustainable Technologies for Electrochemical Selective Conversion of CO 2 to Methanol Michael reaction in organocascade catalysis: A powerful tool for creating architectural complexity in the construction of medicinally privileged heterocyclic scaffolds State-of-the-art for the development of Cu-based heterogeneous catalysts for efficient utilization of furfural to value chemicals via liquid-phase and gas-phase reactions Recent advancements in synthesis and multi-functional catalytic applications of graphitic carbon nitride
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1