内燃机液膜沸腾的综合模型

C. Habchi
{"title":"内燃机液膜沸腾的综合模型","authors":"C. Habchi","doi":"10.2516/OGST/2009062","DOIUrl":null,"url":null,"abstract":"In this paper, the main physical processes governing the nucleate and transition regimes of the boiling of a liquid film were reviewed from the available experimental observations in the literature. The physical tendencies observed in most experiments have been used to develop a comprehensive phenomenological Liquid Film Boiling (LFB) model which allows the calculation of the vaporization of liquid films in the nucleate boiling regime as well as in the transition boiling regime. These regimes are identified by the temperatures of saturation, Nukiyama and Leidenfrost. A particular attention has been made concerning the estimation of Leidenfrost and Nukiyama temperatures as a function of the ambient gas pressure. Several curves of lifetime of rather bulky droplets deposited on a hot surface under various conditions and chosen among those which are available in the recent literature have been used for the validation of the LFB model. The numerical results show that the orders of magnitude and the tendencies observed experimentally are well respected. Particularly, the LFB model reproduces well the progressive disappearance of the Leidenfrost regime observed in experiments with sufficiently high gas pressures. In addition, the gradual increase of the vaporization rate with wall roughness which was previously observed experimentally near the Leidenfrost point has been correctly predicted by the LFB model.","PeriodicalId":19444,"journal":{"name":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"A Comprehensive Model for Liquid Film Boiling in Internal Combustion Engines\",\"authors\":\"C. Habchi\",\"doi\":\"10.2516/OGST/2009062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the main physical processes governing the nucleate and transition regimes of the boiling of a liquid film were reviewed from the available experimental observations in the literature. The physical tendencies observed in most experiments have been used to develop a comprehensive phenomenological Liquid Film Boiling (LFB) model which allows the calculation of the vaporization of liquid films in the nucleate boiling regime as well as in the transition boiling regime. These regimes are identified by the temperatures of saturation, Nukiyama and Leidenfrost. A particular attention has been made concerning the estimation of Leidenfrost and Nukiyama temperatures as a function of the ambient gas pressure. Several curves of lifetime of rather bulky droplets deposited on a hot surface under various conditions and chosen among those which are available in the recent literature have been used for the validation of the LFB model. The numerical results show that the orders of magnitude and the tendencies observed experimentally are well respected. Particularly, the LFB model reproduces well the progressive disappearance of the Leidenfrost regime observed in experiments with sufficiently high gas pressures. In addition, the gradual increase of the vaporization rate with wall roughness which was previously observed experimentally near the Leidenfrost point has been correctly predicted by the LFB model.\",\"PeriodicalId\":19444,\"journal\":{\"name\":\"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2516/OGST/2009062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2516/OGST/2009062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

本文从文献中已有的实验观察中,综述了控制液膜沸腾成核和转变的主要物理过程。在大多数实验中观察到的物理趋势已被用来建立一个综合的现象学液膜沸腾(LFB)模型,该模型允许计算液膜在有核沸腾状态和过渡沸腾状态下的汽化。这些状态由饱和温度、Nukiyama温度和Leidenfrost温度确定。特别注意的是莱顿弗罗斯特温度和Nukiyama温度作为环境气体压力的函数的估计。在各种条件下沉积在热表面上的相当大的液滴的寿命曲线,并从最近的文献中选择了一些曲线,用于验证LFB模型。数值结果表明,实验观察到的数量级和趋势得到了很好的尊重。特别是,LFB模型很好地再现了在足够高的气体压力下实验中观察到的莱顿弗罗斯特状态的逐渐消失。此外,LFB模型正确地预测了先前在Leidenfrost点附近实验观察到的汽化速率随壁面粗糙度的逐渐增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comprehensive Model for Liquid Film Boiling in Internal Combustion Engines
In this paper, the main physical processes governing the nucleate and transition regimes of the boiling of a liquid film were reviewed from the available experimental observations in the literature. The physical tendencies observed in most experiments have been used to develop a comprehensive phenomenological Liquid Film Boiling (LFB) model which allows the calculation of the vaporization of liquid films in the nucleate boiling regime as well as in the transition boiling regime. These regimes are identified by the temperatures of saturation, Nukiyama and Leidenfrost. A particular attention has been made concerning the estimation of Leidenfrost and Nukiyama temperatures as a function of the ambient gas pressure. Several curves of lifetime of rather bulky droplets deposited on a hot surface under various conditions and chosen among those which are available in the recent literature have been used for the validation of the LFB model. The numerical results show that the orders of magnitude and the tendencies observed experimentally are well respected. Particularly, the LFB model reproduces well the progressive disappearance of the Leidenfrost regime observed in experiments with sufficiently high gas pressures. In addition, the gradual increase of the vaporization rate with wall roughness which was previously observed experimentally near the Leidenfrost point has been correctly predicted by the LFB model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of geomechanical effects during SAGD process in a meander belt Flow Simulation Using Local Grid Refinements to Model Laminated Reservoirs Correlating Stochastically Distributed Reservoir Heterogeneities with Steam-Assisted Gravity Drainage Production Efficient estimation of hydrolyzed polyacrylamide (HPAM) solution viscosity for enhanced oil recovery process by polymer flooding Investigation of Asphaltene Adsorption onto Zeolite Beta Nanoparticles to Reduce Asphaltene Deposition in a Silica Sand Pack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1