{"title":"面向高刚度/高强度-重量比的新型空心截面梁晶格超材料的增材制造","authors":"Md Humaun Kobir, Xin Liu, Yiran Yang, Fang Jiang","doi":"10.1115/msec2022-85627","DOIUrl":null,"url":null,"abstract":"\n Metamaterials have emerged as a group of promising materials with potential applications in a wide range of industries such as aerospace and automobile, owing to their unconventional properties. The state-of-the-art suggests that lattice metamaterials offer lightweight structures while ensuring good mechanical properties, and hollow lattices can be leveraged to achieve ultra-lightweight metamaterials to further broaden the application horizons. In this research, hollow cross-sections are designed for lattice-based metamaterials in order to achieve a high stiffness/strength-to-weight ratio. The Mechanics of Structure Genome method is adopted to perform the beam cross-section analysis, leading to three cross-sections studied including solid, elliptical, and rectangular cross-sections. The designed metamaterials with hollow cross-sections have complex structures and therefore they are fabricated using the Selective Laser Sintering process. The compressive tests suggest that metamaterials with hollow cross-sections have a higher stiffness-to-weight ratio of 25% to 30% in comparison with solid cross-sections. In addition, hollow lattice metamaterials demonstrate better energy absorption capability compared to solid lattices of the same density, which is a critical characteristic to avoid catastrophic mechanical failure. It is observed from the compressive tests that the nodes in the unit cells tend to break first, indicating possible future research to further enhance the strength of hollow lattice metamaterials.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":"67 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Additive Manufacturing of Novel Beam Lattice Metamaterials With Hollow Cross-Sections Towards High Stiffness/Strength-to-Weight Ratio\",\"authors\":\"Md Humaun Kobir, Xin Liu, Yiran Yang, Fang Jiang\",\"doi\":\"10.1115/msec2022-85627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Metamaterials have emerged as a group of promising materials with potential applications in a wide range of industries such as aerospace and automobile, owing to their unconventional properties. The state-of-the-art suggests that lattice metamaterials offer lightweight structures while ensuring good mechanical properties, and hollow lattices can be leveraged to achieve ultra-lightweight metamaterials to further broaden the application horizons. In this research, hollow cross-sections are designed for lattice-based metamaterials in order to achieve a high stiffness/strength-to-weight ratio. The Mechanics of Structure Genome method is adopted to perform the beam cross-section analysis, leading to three cross-sections studied including solid, elliptical, and rectangular cross-sections. The designed metamaterials with hollow cross-sections have complex structures and therefore they are fabricated using the Selective Laser Sintering process. The compressive tests suggest that metamaterials with hollow cross-sections have a higher stiffness-to-weight ratio of 25% to 30% in comparison with solid cross-sections. In addition, hollow lattice metamaterials demonstrate better energy absorption capability compared to solid lattices of the same density, which is a critical characteristic to avoid catastrophic mechanical failure. It is observed from the compressive tests that the nodes in the unit cells tend to break first, indicating possible future research to further enhance the strength of hollow lattice metamaterials.\",\"PeriodicalId\":45459,\"journal\":{\"name\":\"Journal of Micro and Nano-Manufacturing\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro and Nano-Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-85627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Additive Manufacturing of Novel Beam Lattice Metamaterials With Hollow Cross-Sections Towards High Stiffness/Strength-to-Weight Ratio
Metamaterials have emerged as a group of promising materials with potential applications in a wide range of industries such as aerospace and automobile, owing to their unconventional properties. The state-of-the-art suggests that lattice metamaterials offer lightweight structures while ensuring good mechanical properties, and hollow lattices can be leveraged to achieve ultra-lightweight metamaterials to further broaden the application horizons. In this research, hollow cross-sections are designed for lattice-based metamaterials in order to achieve a high stiffness/strength-to-weight ratio. The Mechanics of Structure Genome method is adopted to perform the beam cross-section analysis, leading to three cross-sections studied including solid, elliptical, and rectangular cross-sections. The designed metamaterials with hollow cross-sections have complex structures and therefore they are fabricated using the Selective Laser Sintering process. The compressive tests suggest that metamaterials with hollow cross-sections have a higher stiffness-to-weight ratio of 25% to 30% in comparison with solid cross-sections. In addition, hollow lattice metamaterials demonstrate better energy absorption capability compared to solid lattices of the same density, which is a critical characteristic to avoid catastrophic mechanical failure. It is observed from the compressive tests that the nodes in the unit cells tend to break first, indicating possible future research to further enhance the strength of hollow lattice metamaterials.
期刊介绍:
The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.