硬脂酸和玉米蛋白掺入对精制Kappa卡拉胶基复合食用膜性能的影响

D. Praseptiangga, Beta Afrida, N. Mufida, D. Widyaastuti
{"title":"硬脂酸和玉米蛋白掺入对精制Kappa卡拉胶基复合食用膜性能的影响","authors":"D. Praseptiangga, Beta Afrida, N. Mufida, D. Widyaastuti","doi":"10.59796/jcst.v13n3.2023.1324","DOIUrl":null,"url":null,"abstract":"Incorporating hydrophobic materials into a polysaccharide-based film to form a composite edible film has been considered an effective way to strengthen the film properties, especially the water vapor resistance. Fatty acids, such as stearic acid, with long-chain and straight structures, exhibit strong hydrophobic performance to prevent water vapor diffusion through the film surface. Meanwhile, zein has been revealed as an encouraging material due to its compactness, less allergic, and gas barrier properties. The investigation of kappa-carrageenan/zein/stearic acid-based green composite edible film has been limited. Thus, this study aims to examine the effect of increasing stearic acid and zein concentrations on improving the moisture barrier and mechanical properties of kappa carrageenan-based composite edible film. Different concentrations of stearic acid (5, 10, and 15% w/w carrageenan) and zein (2.5, 5, and 7.5% w/w carrageenan) were applied to the composite edible film prepared using the solution casting method. The fabricated films have a thickness of 0.092–0.122 mm. The results indicated that increasing the concentration of stearic acid enhances the water vapor barrier and tensile strength of the edible film (p < 0.05). However, the increased zein concentration slightly weakened the water vapor barrier properties. Then, the elongation of the manufactured films was quite improved by the increment of stearic acid proportion, but neither by the increment of zein proportion nor the combination of these two substances. However, the incorporation of stearic acid and zein into refined-kappa carrageenan-based film remarkably improved the tensile strength, elongation, and water vapor barrier properties by 12–18%, 23–27%, and 43–44%, respectively, in comparison to the neat film. Based on the analysis result, the manufactured film which consists of 10% stearic acid and 2.5% zein is considered as the best film formula. This study, therefore, revealed the potentiality of stearic acid enforcement in food packaging applications.","PeriodicalId":36369,"journal":{"name":"Journal of Current Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Stearic Acid and Zein Incorporation on Refined Kappa Carrageenan-Based Composite Edible Film Properties\",\"authors\":\"D. Praseptiangga, Beta Afrida, N. Mufida, D. Widyaastuti\",\"doi\":\"10.59796/jcst.v13n3.2023.1324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incorporating hydrophobic materials into a polysaccharide-based film to form a composite edible film has been considered an effective way to strengthen the film properties, especially the water vapor resistance. Fatty acids, such as stearic acid, with long-chain and straight structures, exhibit strong hydrophobic performance to prevent water vapor diffusion through the film surface. Meanwhile, zein has been revealed as an encouraging material due to its compactness, less allergic, and gas barrier properties. The investigation of kappa-carrageenan/zein/stearic acid-based green composite edible film has been limited. Thus, this study aims to examine the effect of increasing stearic acid and zein concentrations on improving the moisture barrier and mechanical properties of kappa carrageenan-based composite edible film. Different concentrations of stearic acid (5, 10, and 15% w/w carrageenan) and zein (2.5, 5, and 7.5% w/w carrageenan) were applied to the composite edible film prepared using the solution casting method. The fabricated films have a thickness of 0.092–0.122 mm. The results indicated that increasing the concentration of stearic acid enhances the water vapor barrier and tensile strength of the edible film (p < 0.05). However, the increased zein concentration slightly weakened the water vapor barrier properties. Then, the elongation of the manufactured films was quite improved by the increment of stearic acid proportion, but neither by the increment of zein proportion nor the combination of these two substances. However, the incorporation of stearic acid and zein into refined-kappa carrageenan-based film remarkably improved the tensile strength, elongation, and water vapor barrier properties by 12–18%, 23–27%, and 43–44%, respectively, in comparison to the neat film. Based on the analysis result, the manufactured film which consists of 10% stearic acid and 2.5% zein is considered as the best film formula. This study, therefore, revealed the potentiality of stearic acid enforcement in food packaging applications.\",\"PeriodicalId\":36369,\"journal\":{\"name\":\"Journal of Current Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Current Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59796/jcst.v13n3.2023.1324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Current Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59796/jcst.v13n3.2023.1324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

将疏水材料掺入多糖基薄膜中形成复合可食用薄膜已被认为是增强薄膜性能,特别是抗水汽性的有效途径。脂肪酸,如硬脂酸,具有长链和直结构,具有很强的疏水性,可以防止水蒸气通过膜表面扩散。同时,由于其致密性,较少过敏和气体阻隔性,玉米蛋白已被揭示为一种令人鼓舞的材料。kappa- carragean /zein/硬脂酸基绿色复合食用膜的研究一直受到限制。因此,本研究旨在研究增加硬脂酸和玉米蛋白浓度对kappa卡拉胶基复合食用膜的阻湿性和力学性能的影响。将不同浓度的硬脂酸(5、10、15% w/w的角叉胶)和玉米蛋白(2.5、5、7.5% w/w的角叉胶)分别加入到溶液浇筑法制备的复合食用膜中。制备的薄膜厚度为0.092 ~ 0.122 mm。结果表明,增加硬脂酸浓度可提高食用膜的水汽阻隔性和抗拉强度(p < 0.05)。然而,玉米蛋白浓度的增加使其水蒸气阻隔性能略有减弱。增加硬脂酸的比例可以提高薄膜的伸长率,但增加玉米蛋白的比例和两者的组合对薄膜的伸长率没有显著影响。然而,硬脂酸和玉米蛋白掺入精制卡帕卡拉胶基薄膜后,其抗拉强度、伸长率和水蒸气阻隔性能分别比纯膜提高了12-18%、23-27%和43-44%。根据分析结果,认为由10%硬脂酸和2.5%玉米蛋白组成的薄膜配方为最佳薄膜配方。因此,这项研究揭示了硬脂酸强制在食品包装应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Stearic Acid and Zein Incorporation on Refined Kappa Carrageenan-Based Composite Edible Film Properties
Incorporating hydrophobic materials into a polysaccharide-based film to form a composite edible film has been considered an effective way to strengthen the film properties, especially the water vapor resistance. Fatty acids, such as stearic acid, with long-chain and straight structures, exhibit strong hydrophobic performance to prevent water vapor diffusion through the film surface. Meanwhile, zein has been revealed as an encouraging material due to its compactness, less allergic, and gas barrier properties. The investigation of kappa-carrageenan/zein/stearic acid-based green composite edible film has been limited. Thus, this study aims to examine the effect of increasing stearic acid and zein concentrations on improving the moisture barrier and mechanical properties of kappa carrageenan-based composite edible film. Different concentrations of stearic acid (5, 10, and 15% w/w carrageenan) and zein (2.5, 5, and 7.5% w/w carrageenan) were applied to the composite edible film prepared using the solution casting method. The fabricated films have a thickness of 0.092–0.122 mm. The results indicated that increasing the concentration of stearic acid enhances the water vapor barrier and tensile strength of the edible film (p < 0.05). However, the increased zein concentration slightly weakened the water vapor barrier properties. Then, the elongation of the manufactured films was quite improved by the increment of stearic acid proportion, but neither by the increment of zein proportion nor the combination of these two substances. However, the incorporation of stearic acid and zein into refined-kappa carrageenan-based film remarkably improved the tensile strength, elongation, and water vapor barrier properties by 12–18%, 23–27%, and 43–44%, respectively, in comparison to the neat film. Based on the analysis result, the manufactured film which consists of 10% stearic acid and 2.5% zein is considered as the best film formula. This study, therefore, revealed the potentiality of stearic acid enforcement in food packaging applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Current Science and Technology
Journal of Current Science and Technology Multidisciplinary-Multidisciplinary
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Optimization of Sulfated Polysaccharides Extraction from Gracilaria fisheri Obtained Through Microwave-Assisted Extraction Effects of Acupuncture on Autonomic Nervous System Parameters and Salivary Cortisol Level Among Mental Stress University Students: A Pilot Randomized Controlled Trial Decomposition and Holt-Winters Enhanced by the Whale Optimization Algorithm for Forecasting the Amount of Water Inflow into the Large Dam Reservoirs in Southern Thailand Psychometric Evaluation of the Thai Male Depression Risk Scale (MDRS-TH) Automatic Melanoma Skin Cancer Detection and Segmentation using Snakecut Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1