{"title":"基于SOI晶圆技术的通过玻璃电互连的谐振压力传感器","authors":"Z. Luo, Deyong Chen, Junbo Wang","doi":"10.1109/NEMS.2014.6908800","DOIUrl":null,"url":null,"abstract":"This paper presents a resonant pressure sensor based on SOI wafer technology. In this device, pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in “H” type doubly-clamped micro resonant beams, leading to resonant frequency shift. In device fabrication, through-glass vias and silicon-to-glass anodic bonding technologies were utilized. A high-strength hermetic sealing was then achieved after anodic bonding, with the resonators working in vacuum. Experimental results recorded a device resolution of 10pa, with the nonlinearity of 0.03% when pressure varying from 10kPa to 100kPa.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"14 1","pages":"243-246"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Resonant pressure sensor with through-glass electrical interconnect based on SOI wafer technology\",\"authors\":\"Z. Luo, Deyong Chen, Junbo Wang\",\"doi\":\"10.1109/NEMS.2014.6908800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a resonant pressure sensor based on SOI wafer technology. In this device, pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in “H” type doubly-clamped micro resonant beams, leading to resonant frequency shift. In device fabrication, through-glass vias and silicon-to-glass anodic bonding technologies were utilized. A high-strength hermetic sealing was then achieved after anodic bonding, with the resonators working in vacuum. Experimental results recorded a device resolution of 10pa, with the nonlinearity of 0.03% when pressure varying from 10kPa to 100kPa.\",\"PeriodicalId\":22566,\"journal\":{\"name\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"14 1\",\"pages\":\"243-246\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2014.6908800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2014.6908800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resonant pressure sensor with through-glass electrical interconnect based on SOI wafer technology
This paper presents a resonant pressure sensor based on SOI wafer technology. In this device, pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in “H” type doubly-clamped micro resonant beams, leading to resonant frequency shift. In device fabrication, through-glass vias and silicon-to-glass anodic bonding technologies were utilized. A high-strength hermetic sealing was then achieved after anodic bonding, with the resonators working in vacuum. Experimental results recorded a device resolution of 10pa, with the nonlinearity of 0.03% when pressure varying from 10kPa to 100kPa.