Yang Han, Yujia Sun, Lingjiao Wang, Wei Liu, F. Bretz
{"title":"线性回归中无限多个未来值的统计校准:同步或点公差区间或其他什么?","authors":"Yang Han, Yujia Sun, Lingjiao Wang, Wei Liu, F. Bretz","doi":"10.1093/jrsssc/qlac004","DOIUrl":null,"url":null,"abstract":"\n Statistical calibration using regression is a useful statistical tool with many applications. For confidence sets for x-values associated with infinitely many future y-values, there is a consensus in the statistical literature that the confidence sets constructed should guarantee a key property. While it is well known that the confidence sets based on the simultaneous tolerance intervals (STIs) guarantee this key property conservatively, it is desirable to construct confidence sets that satisfy this property exactly. Also, there is a misconception that the confidence sets based on the pointwise tolerance intervals (PTIs) also guarantee this property. This paper constructs the weighted simultaneous tolerance intervals (WSTIs) so that the confidence sets based on the WSTIs satisfy this property exactly if the future observations have the x-values distributed according to a known specific distribution F(⋅). Through the lens of the WSTIs, convincing counter examples are also provided to demonstrate that the confidence sets based on the PTIs do not guarantee the key property in general and so should not be used. The WSTIs have been applied to real data examples to show that the WSTIs can produce more accurate calibration intervals than STIs and PTIs.","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"85 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical calibration for infinite many future values in linear regression: simultaneous or pointwise tolerance intervals or what else?\",\"authors\":\"Yang Han, Yujia Sun, Lingjiao Wang, Wei Liu, F. Bretz\",\"doi\":\"10.1093/jrsssc/qlac004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Statistical calibration using regression is a useful statistical tool with many applications. For confidence sets for x-values associated with infinitely many future y-values, there is a consensus in the statistical literature that the confidence sets constructed should guarantee a key property. While it is well known that the confidence sets based on the simultaneous tolerance intervals (STIs) guarantee this key property conservatively, it is desirable to construct confidence sets that satisfy this property exactly. Also, there is a misconception that the confidence sets based on the pointwise tolerance intervals (PTIs) also guarantee this property. This paper constructs the weighted simultaneous tolerance intervals (WSTIs) so that the confidence sets based on the WSTIs satisfy this property exactly if the future observations have the x-values distributed according to a known specific distribution F(⋅). Through the lens of the WSTIs, convincing counter examples are also provided to demonstrate that the confidence sets based on the PTIs do not guarantee the key property in general and so should not be used. The WSTIs have been applied to real data examples to show that the WSTIs can produce more accurate calibration intervals than STIs and PTIs.\",\"PeriodicalId\":49981,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssc/qlac004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlac004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Statistical calibration for infinite many future values in linear regression: simultaneous or pointwise tolerance intervals or what else?
Statistical calibration using regression is a useful statistical tool with many applications. For confidence sets for x-values associated with infinitely many future y-values, there is a consensus in the statistical literature that the confidence sets constructed should guarantee a key property. While it is well known that the confidence sets based on the simultaneous tolerance intervals (STIs) guarantee this key property conservatively, it is desirable to construct confidence sets that satisfy this property exactly. Also, there is a misconception that the confidence sets based on the pointwise tolerance intervals (PTIs) also guarantee this property. This paper constructs the weighted simultaneous tolerance intervals (WSTIs) so that the confidence sets based on the WSTIs satisfy this property exactly if the future observations have the x-values distributed according to a known specific distribution F(⋅). Through the lens of the WSTIs, convincing counter examples are also provided to demonstrate that the confidence sets based on the PTIs do not guarantee the key property in general and so should not be used. The WSTIs have been applied to real data examples to show that the WSTIs can produce more accurate calibration intervals than STIs and PTIs.
期刊介绍:
The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies).
A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.