高速和面积有效的单精度浮点运算单元

Sangeeta D. Palekar, N. Narkhede
{"title":"高速和面积有效的单精度浮点运算单元","authors":"Sangeeta D. Palekar, N. Narkhede","doi":"10.1109/RTEICT.2016.7808177","DOIUrl":null,"url":null,"abstract":"Many fields of science, engineering, finance, mathematical optimization methods, Artificial Neural Networks, signal and image processing algorithms requires the operations and manipulations of real numbers. Floating-point operations are most extensively adopted approach for exploiting real numbers. The speed of Floating-point arithmetic unit is very crucial performance parameter which impinges the operation of the system. On that account a 32 bit floating point arithmetic unit is designed for different applications which insists for eminent speed. The intent of this design is to reduce the area and combinational path delay to enhance the speed of operation which is attained by parallelism in multiplier which is used for mantissa multiplication. For Floating-point multiplier Booth recoded multiplier is used where the number of partial product are reduced which in turns boost the speed of multiplication. The proposed module is implemented on Spartan 6 FPGA. Performance of the floating point arithmetic unit is compared with latest research papers regarding delay and it is ascertained that there is 59% of optimization in critical path delay of floating point multiplier and 50 % of optimization of floating point adder. The result illustrates that proposed arithmetic unit has a great impact on convalescent the speed and area of the design.","PeriodicalId":6527,"journal":{"name":"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","volume":"55 1","pages":"1950-1954"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"High speed and area efficient single precision floating point arithmetic unit\",\"authors\":\"Sangeeta D. Palekar, N. Narkhede\",\"doi\":\"10.1109/RTEICT.2016.7808177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many fields of science, engineering, finance, mathematical optimization methods, Artificial Neural Networks, signal and image processing algorithms requires the operations and manipulations of real numbers. Floating-point operations are most extensively adopted approach for exploiting real numbers. The speed of Floating-point arithmetic unit is very crucial performance parameter which impinges the operation of the system. On that account a 32 bit floating point arithmetic unit is designed for different applications which insists for eminent speed. The intent of this design is to reduce the area and combinational path delay to enhance the speed of operation which is attained by parallelism in multiplier which is used for mantissa multiplication. For Floating-point multiplier Booth recoded multiplier is used where the number of partial product are reduced which in turns boost the speed of multiplication. The proposed module is implemented on Spartan 6 FPGA. Performance of the floating point arithmetic unit is compared with latest research papers regarding delay and it is ascertained that there is 59% of optimization in critical path delay of floating point multiplier and 50 % of optimization of floating point adder. The result illustrates that proposed arithmetic unit has a great impact on convalescent the speed and area of the design.\",\"PeriodicalId\":6527,\"journal\":{\"name\":\"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"volume\":\"55 1\",\"pages\":\"1950-1954\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTEICT.2016.7808177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT.2016.7808177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

科学、工程、金融、数学优化方法、人工神经网络、信号和图像处理算法等许多领域都需要实数的运算和操纵。浮点运算是利用实数最广泛采用的方法。浮点运算单元的运算速度是影响系统运行的关键性能参数。因此,32位浮点运算单元是为不同的应用而设计的,它坚持卓越的速度。本设计的目的是为了减少尾数乘法中乘法器的并行性所带来的面积和组合路径延迟,从而提高运算速度。对于浮点乘法器,采用布斯编码乘法器,减少了部分乘积的数量,从而提高了乘法的速度。该模块在Spartan 6 FPGA上实现。将浮点运算单元的性能与最新的延迟研究文献进行了比较,确定浮点乘法器的关键路径延迟优化率为59%,浮点加法器的关键路径延迟优化率为50%。结果表明,所提出的算法单元对恢复设计的速度和面积有很大的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High speed and area efficient single precision floating point arithmetic unit
Many fields of science, engineering, finance, mathematical optimization methods, Artificial Neural Networks, signal and image processing algorithms requires the operations and manipulations of real numbers. Floating-point operations are most extensively adopted approach for exploiting real numbers. The speed of Floating-point arithmetic unit is very crucial performance parameter which impinges the operation of the system. On that account a 32 bit floating point arithmetic unit is designed for different applications which insists for eminent speed. The intent of this design is to reduce the area and combinational path delay to enhance the speed of operation which is attained by parallelism in multiplier which is used for mantissa multiplication. For Floating-point multiplier Booth recoded multiplier is used where the number of partial product are reduced which in turns boost the speed of multiplication. The proposed module is implemented on Spartan 6 FPGA. Performance of the floating point arithmetic unit is compared with latest research papers regarding delay and it is ascertained that there is 59% of optimization in critical path delay of floating point multiplier and 50 % of optimization of floating point adder. The result illustrates that proposed arithmetic unit has a great impact on convalescent the speed and area of the design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
I-Vector based depression level estimation technique A trust model in cloud computing based on fuzzy logic Time dispersion parameters for single bounce 2D geometrical channel including rain fading effect Information retrieval system using UNL for multilingual question answering Face recognition with CLNF for uncontrolled occlusion faces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1