基于词嵌入和词定义的跨语言语义词相似度测量方法

Van-Tan Bui, Phuong-Thai Nguyen
{"title":"基于词嵌入和词定义的跨语言语义词相似度测量方法","authors":"Van-Tan Bui, Phuong-Thai Nguyen","doi":"10.1109/RIVF51545.2021.9642084","DOIUrl":null,"url":null,"abstract":"Cross-lingual semantic word similarity (CLSW) ad- dresses the task of estimating the semantic distance between two words across languages. This task is an important component in many natural language processing applications. Recent studies have proposed several effective CLSW models for resource- rich language pairs such as English-German, English-French. However, This task has not been effectively addressed for language pairs consisting of Vietnamese and another one. In this paper, we propose a neural network model that exploits cross- lingual lexical resources to learn high-quality cross-lingual word embedding models. Since our neural network model is language- independent, it can learn a truly multilingual space. Furthermore, we introduce a novel cross-lingual semantic word similarity measurement method based on Word Embeddings and Word Definitions (WEWD). Last but not least, we introduce a standard Vietnamese-English dataset for the cross-lingual semantic word similarity measurement task (VESim-1000). The experimental results show that our proposed method is more robust and outperforms current state-of-the-art methods that are only based on word embeddings or lexical resources.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"94 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WEWD: A Combined Approach for Measuring Cross-lingual Semantic Word Similarity Based on Word Embeddings and Word Definitions\",\"authors\":\"Van-Tan Bui, Phuong-Thai Nguyen\",\"doi\":\"10.1109/RIVF51545.2021.9642084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-lingual semantic word similarity (CLSW) ad- dresses the task of estimating the semantic distance between two words across languages. This task is an important component in many natural language processing applications. Recent studies have proposed several effective CLSW models for resource- rich language pairs such as English-German, English-French. However, This task has not been effectively addressed for language pairs consisting of Vietnamese and another one. In this paper, we propose a neural network model that exploits cross- lingual lexical resources to learn high-quality cross-lingual word embedding models. Since our neural network model is language- independent, it can learn a truly multilingual space. Furthermore, we introduce a novel cross-lingual semantic word similarity measurement method based on Word Embeddings and Word Definitions (WEWD). Last but not least, we introduce a standard Vietnamese-English dataset for the cross-lingual semantic word similarity measurement task (VESim-1000). The experimental results show that our proposed method is more robust and outperforms current state-of-the-art methods that are only based on word embeddings or lexical resources.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"94 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

跨语言语义词相似度(CLSW)是一种跨语言估计两个词之间语义距离的方法。该任务是许多自然语言处理应用的重要组成部分。最近的研究针对英德、英法等资源丰富的语言对提出了几种有效的CLSW模型。然而,对于由越南语和另一种语言组成的语言对,这一任务尚未得到有效解决。本文提出了一种利用跨语言词汇资源学习高质量跨语言词嵌入模型的神经网络模型。由于我们的神经网络模型是语言无关的,它可以学习一个真正的多语言空间。在此基础上,提出了一种基于词嵌入和词定义的跨语言语义词相似度度量方法。最后,我们为跨语言语义词相似度测量任务(VESim-1000)引入了一个标准的越南语-英语数据集。实验结果表明,我们提出的方法鲁棒性更强,并且优于当前仅基于词嵌入或词汇资源的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WEWD: A Combined Approach for Measuring Cross-lingual Semantic Word Similarity Based on Word Embeddings and Word Definitions
Cross-lingual semantic word similarity (CLSW) ad- dresses the task of estimating the semantic distance between two words across languages. This task is an important component in many natural language processing applications. Recent studies have proposed several effective CLSW models for resource- rich language pairs such as English-German, English-French. However, This task has not been effectively addressed for language pairs consisting of Vietnamese and another one. In this paper, we propose a neural network model that exploits cross- lingual lexical resources to learn high-quality cross-lingual word embedding models. Since our neural network model is language- independent, it can learn a truly multilingual space. Furthermore, we introduce a novel cross-lingual semantic word similarity measurement method based on Word Embeddings and Word Definitions (WEWD). Last but not least, we introduce a standard Vietnamese-English dataset for the cross-lingual semantic word similarity measurement task (VESim-1000). The experimental results show that our proposed method is more robust and outperforms current state-of-the-art methods that are only based on word embeddings or lexical resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Image Watermarking Scheme Using LU Decomposition Streaming Algorithm for Submodular Cover Problem Under Noise Hand part segmentations in hand mask of egocentric images using Distance Transformation Map and SVM Classifier Multiple Imputation by Generative Adversarial Networks for Classification with Incomplete Data MC-OCR Challenge 2021: Simple approach for receipt information extraction and quality evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1