基于云的加密文档模糊关键字搜索方案

Hanya M. Abdallah, A. Taha, M. Selim
{"title":"基于云的加密文档模糊关键字搜索方案","authors":"Hanya M. Abdallah, A. Taha, M. Selim","doi":"10.4018/ijskd.2021100106","DOIUrl":null,"url":null,"abstract":"With the rapid growth and adoption of cloud computing, more sensitive information is centralized onto the cloud every day. For protecting this sensitive information, it must be encrypted before being outsourced. Current search schemes allow the user to query encrypted data using keywords, but these schemes do not guarantee the privacy of queries (i.e., when the user hits query more than once with the same keywords, the server can capture information about the data). This paper focuses on the secure storage and retrieval of ciphered data with preserving query privacy. The proposed scheme deploys the sparse vector space model to represent each query, which focuses on reducing the storage and representation overheads. And the proposed scheme adds a random number to each query vector. Hence, the cloud server cannot distinguish between queries with the same keywords, which ensures the privacy of the query. Experimental results show that the proposed scheme outperforms other relevant state-of-the-art schemes.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"18 1","pages":"82-100"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cloud-Based Fuzzy Keyword Search Scheme Over Encrypted Documents\",\"authors\":\"Hanya M. Abdallah, A. Taha, M. Selim\",\"doi\":\"10.4018/ijskd.2021100106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth and adoption of cloud computing, more sensitive information is centralized onto the cloud every day. For protecting this sensitive information, it must be encrypted before being outsourced. Current search schemes allow the user to query encrypted data using keywords, but these schemes do not guarantee the privacy of queries (i.e., when the user hits query more than once with the same keywords, the server can capture information about the data). This paper focuses on the secure storage and retrieval of ciphered data with preserving query privacy. The proposed scheme deploys the sparse vector space model to represent each query, which focuses on reducing the storage and representation overheads. And the proposed scheme adds a random number to each query vector. Hence, the cloud server cannot distinguish between queries with the same keywords, which ensures the privacy of the query. Experimental results show that the proposed scheme outperforms other relevant state-of-the-art schemes.\",\"PeriodicalId\":13656,\"journal\":{\"name\":\"Int. J. Sociotechnology Knowl. Dev.\",\"volume\":\"18 1\",\"pages\":\"82-100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Sociotechnology Knowl. Dev.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijskd.2021100106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijskd.2021100106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着云计算的快速发展和采用,越来越多的敏感信息每天都集中在云上。为了保护这些敏感信息,必须在外包之前对其进行加密。当前的搜索方案允许用户使用关键字查询加密数据,但这些方案不能保证查询的隐私性(即,当用户使用相同的关键字多次点击查询时,服务器可以捕获有关数据的信息)。本文主要研究在保证查询隐私的前提下加密数据的安全存储和检索。该方案采用稀疏向量空间模型来表示每个查询,其重点是减少存储和表示开销。该方案为每个查询向量添加一个随机数。因此,云服务器无法区分具有相同关键字的查询,从而保证了查询的私密性。实验结果表明,该方案优于其他相关的先进方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cloud-Based Fuzzy Keyword Search Scheme Over Encrypted Documents
With the rapid growth and adoption of cloud computing, more sensitive information is centralized onto the cloud every day. For protecting this sensitive information, it must be encrypted before being outsourced. Current search schemes allow the user to query encrypted data using keywords, but these schemes do not guarantee the privacy of queries (i.e., when the user hits query more than once with the same keywords, the server can capture information about the data). This paper focuses on the secure storage and retrieval of ciphered data with preserving query privacy. The proposed scheme deploys the sparse vector space model to represent each query, which focuses on reducing the storage and representation overheads. And the proposed scheme adds a random number to each query vector. Hence, the cloud server cannot distinguish between queries with the same keywords, which ensures the privacy of the query. Experimental results show that the proposed scheme outperforms other relevant state-of-the-art schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel Adaptive Histogram Binning-Based Lesion Segmentation for Discerning Severity in COVID-19 Chest CT Scan Images Information and Communication Technology Management for Sustainable Youth Employability in Underserved Society: Technology Use for Skills Development of Youths The stimulus of factors in implementing the e-governance concept in Namibia Confronting Current Crises and Critical Challenges of Climate Change International Perspective on Securing Cyberspace Against Terrorist Acts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1