{"title":"音乐信息检索:最新发展与应用","authors":"M. Schedl, E. Gómez, Julián Urbano","doi":"10.1561/1500000042","DOIUrl":null,"url":null,"abstract":"We provide a survey of the field of Music Information Retrieval (MIR), in particular paying attention to latest developments, such as semantic auto-tagging and user-centric retrieval and recommendation approaches. We first elaborate on well-established and proven methods for feature extraction and music indexing, from both the audio signal and contextual data sources about music items, such as web pages or collaborative tags. These in turn enable a wide variety of music retrieval tasks, such as semantic music search or music identification (\"query by example\"). Subsequently, we review current work on user analysis and modeling in the context of music recommendation and retrieval, addressing the recent trend towards user-centric and adaptive approaches and systems. A discussion follows about the important aspect of how various MIR approaches to different problems are evaluated and compared. Eventually, a discussion about the major open challenges concludes the survey.","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"22 1","pages":"127-261"},"PeriodicalIF":8.3000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"213","resultStr":"{\"title\":\"Music Information Retrieval: Recent Developments and Applications\",\"authors\":\"M. Schedl, E. Gómez, Julián Urbano\",\"doi\":\"10.1561/1500000042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a survey of the field of Music Information Retrieval (MIR), in particular paying attention to latest developments, such as semantic auto-tagging and user-centric retrieval and recommendation approaches. We first elaborate on well-established and proven methods for feature extraction and music indexing, from both the audio signal and contextual data sources about music items, such as web pages or collaborative tags. These in turn enable a wide variety of music retrieval tasks, such as semantic music search or music identification (\\\"query by example\\\"). Subsequently, we review current work on user analysis and modeling in the context of music recommendation and retrieval, addressing the recent trend towards user-centric and adaptive approaches and systems. A discussion follows about the important aspect of how various MIR approaches to different problems are evaluated and compared. Eventually, a discussion about the major open challenges concludes the survey.\",\"PeriodicalId\":48829,\"journal\":{\"name\":\"Foundations and Trends in Information Retrieval\",\"volume\":\"22 1\",\"pages\":\"127-261\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2014-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"213\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Information Retrieval\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1561/1500000042\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Information Retrieval","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1561/1500000042","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Music Information Retrieval: Recent Developments and Applications
We provide a survey of the field of Music Information Retrieval (MIR), in particular paying attention to latest developments, such as semantic auto-tagging and user-centric retrieval and recommendation approaches. We first elaborate on well-established and proven methods for feature extraction and music indexing, from both the audio signal and contextual data sources about music items, such as web pages or collaborative tags. These in turn enable a wide variety of music retrieval tasks, such as semantic music search or music identification ("query by example"). Subsequently, we review current work on user analysis and modeling in the context of music recommendation and retrieval, addressing the recent trend towards user-centric and adaptive approaches and systems. A discussion follows about the important aspect of how various MIR approaches to different problems are evaluated and compared. Eventually, a discussion about the major open challenges concludes the survey.
期刊介绍:
The surge in research across all domains in the past decade has resulted in a plethora of new publications, causing an exponential growth in published research. Navigating through this extensive literature and staying current has become a time-consuming challenge. While electronic publishing provides instant access to more articles than ever, discerning the essential ones for a comprehensive understanding of any topic remains an issue. To tackle this, Foundations and Trends® in Information Retrieval - FnTIR - addresses the problem by publishing high-quality survey and tutorial monographs in the field.
Each issue of Foundations and Trends® in Information Retrieval - FnT IR features a 50-100 page monograph authored by research leaders, covering tutorial subjects, research retrospectives, and survey papers that provide state-of-the-art reviews within the scope of the journal.