Aline M. Nakamura, Alessandro S. Nascimento, Igor Polikarpov
{"title":"碳水化合物酯酶的结构多样性","authors":"Aline M. Nakamura, Alessandro S. Nascimento, Igor Polikarpov","doi":"10.1016/j.biori.2017.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Carbohydrate esterases (CEs) catalyze the de-O or de-N-acylation by removing the ester decorations from carbohydrates. CEs are currently classified in 15 families in the Carbohydrate-Active Enzyme (CAZy) database, which classifies a large variety of enzymes that assemble, modify and breakdown carbohydrates and glycoconjugates. CEs have significant importance as biocatalysts in a variety of bioindustrial processes and applications. Thus, the understanding of molecular mechanisms involved in CE catalysis is essential. However, despite a rather large number of enzymes classified as CEs, just a few have been studied biochemically and only a handful has their three-dimensional structures determined and analyzed. Here, we present a brief overview of all currently classified CE families, mainly focusing on the structures and enzymatic activities of CEs.</p></div>","PeriodicalId":100187,"journal":{"name":"Biotechnology Research and Innovation","volume":"1 1","pages":"Pages 35-51"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.biori.2017.02.001","citationCount":"90","resultStr":"{\"title\":\"Structural diversity of carbohydrate esterases\",\"authors\":\"Aline M. Nakamura, Alessandro S. Nascimento, Igor Polikarpov\",\"doi\":\"10.1016/j.biori.2017.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbohydrate esterases (CEs) catalyze the de-O or de-N-acylation by removing the ester decorations from carbohydrates. CEs are currently classified in 15 families in the Carbohydrate-Active Enzyme (CAZy) database, which classifies a large variety of enzymes that assemble, modify and breakdown carbohydrates and glycoconjugates. CEs have significant importance as biocatalysts in a variety of bioindustrial processes and applications. Thus, the understanding of molecular mechanisms involved in CE catalysis is essential. However, despite a rather large number of enzymes classified as CEs, just a few have been studied biochemically and only a handful has their three-dimensional structures determined and analyzed. Here, we present a brief overview of all currently classified CE families, mainly focusing on the structures and enzymatic activities of CEs.</p></div>\",\"PeriodicalId\":100187,\"journal\":{\"name\":\"Biotechnology Research and Innovation\",\"volume\":\"1 1\",\"pages\":\"Pages 35-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.biori.2017.02.001\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Research and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452072117300072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Research and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452072117300072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carbohydrate esterases (CEs) catalyze the de-O or de-N-acylation by removing the ester decorations from carbohydrates. CEs are currently classified in 15 families in the Carbohydrate-Active Enzyme (CAZy) database, which classifies a large variety of enzymes that assemble, modify and breakdown carbohydrates and glycoconjugates. CEs have significant importance as biocatalysts in a variety of bioindustrial processes and applications. Thus, the understanding of molecular mechanisms involved in CE catalysis is essential. However, despite a rather large number of enzymes classified as CEs, just a few have been studied biochemically and only a handful has their three-dimensional structures determined and analyzed. Here, we present a brief overview of all currently classified CE families, mainly focusing on the structures and enzymatic activities of CEs.