基于深度学习的实时交通事故类型与故障信息提供服务

Geunmo Kim, Jinsung Cho, Sungmin Kim, Seung-Hae Beak, Seung-Yup Ryu, Jaejong Koh, Bongjae Kim
{"title":"基于深度学习的实时交通事故类型与故障信息提供服务","authors":"Geunmo Kim, Jinsung Cho, Sungmin Kim, Seung-Hae Beak, Seung-Yup Ryu, Jaejong Koh, Bongjae Kim","doi":"10.7236/JIIBC.2021.21.3.1","DOIUrl":null,"url":null,"abstract":"Determining the percentage of negligence between the parties in the event of road traffic accidents is a significant problem. In order to provide users with more accurate criteria for determining the percentage of negligence, several companies are providing services. However, services currently available are limited to immediate use at the scene of an accident. Generally, the service that determines the percentage of negligence can be used after all accident handling procedures have been completed. This paper provides a real-time traffic accident type and fault rate information provision service utilizing a deep learning-based predictive model to overcome these limitations. Users can immediately identify accident types and fault information by taking pictures at the accident site and check actual precedents of the same accident type. Users will be able to use the service to more accurately and reliably determine the percentage of negligence and handle incidents.","PeriodicalId":22795,"journal":{"name":"The Journal of the Institute of Webcasting, Internet and Telecommunication","volume":"76 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-based Real-time Traffic Accident Type and Fault Information Provision Service\",\"authors\":\"Geunmo Kim, Jinsung Cho, Sungmin Kim, Seung-Hae Beak, Seung-Yup Ryu, Jaejong Koh, Bongjae Kim\",\"doi\":\"10.7236/JIIBC.2021.21.3.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the percentage of negligence between the parties in the event of road traffic accidents is a significant problem. In order to provide users with more accurate criteria for determining the percentage of negligence, several companies are providing services. However, services currently available are limited to immediate use at the scene of an accident. Generally, the service that determines the percentage of negligence can be used after all accident handling procedures have been completed. This paper provides a real-time traffic accident type and fault rate information provision service utilizing a deep learning-based predictive model to overcome these limitations. Users can immediately identify accident types and fault information by taking pictures at the accident site and check actual precedents of the same accident type. Users will be able to use the service to more accurately and reliably determine the percentage of negligence and handle incidents.\",\"PeriodicalId\":22795,\"journal\":{\"name\":\"The Journal of the Institute of Webcasting, Internet and Telecommunication\",\"volume\":\"76 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of the Institute of Webcasting, Internet and Telecommunication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7236/JIIBC.2021.21.3.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Institute of Webcasting, Internet and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7236/JIIBC.2021.21.3.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在道路交通事故中,确定当事人之间过失的比例是一个重大问题。为了给用户提供更准确的判断过失比例的标准,有几家公司正在提供服务。然而,目前可用的服务仅限于在事故现场立即使用。一般来说,确定过失百分比的服务可以在所有事故处理程序完成后使用。本文利用基于深度学习的预测模型,提供了一种实时交通事故类型和故障率信息提供服务,以克服这些局限性。用户可以通过在事故现场拍照,立即识别事故类型和故障信息,并查看同类型事故的实际案例。用户将能够使用该服务更准确可靠地确定疏忽的百分比并处理事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning-based Real-time Traffic Accident Type and Fault Information Provision Service
Determining the percentage of negligence between the parties in the event of road traffic accidents is a significant problem. In order to provide users with more accurate criteria for determining the percentage of negligence, several companies are providing services. However, services currently available are limited to immediate use at the scene of an accident. Generally, the service that determines the percentage of negligence can be used after all accident handling procedures have been completed. This paper provides a real-time traffic accident type and fault rate information provision service utilizing a deep learning-based predictive model to overcome these limitations. Users can immediately identify accident types and fault information by taking pictures at the accident site and check actual precedents of the same accident type. Users will be able to use the service to more accurately and reliably determine the percentage of negligence and handle incidents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Apple Detection Algorithm based on an Improved SSD Effect of Investment Evaluation Criteria of Public ICT Projects on Business Success Lightweight of ONNX using Quantization-based Model Compression A study on Recognition of Inpatient Room Acoustic Pattern for Hospital safety An emprical analysis on the effect of OTT company's content investment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1