{"title":"基于单幅图像的三维几何背景的相干目标检测","authors":"Jiyan Pan, T. Kanade","doi":"10.1109/ICCV.2013.320","DOIUrl":null,"url":null,"abstract":"Objects in a real world image cannot have arbitrary appearance, sizes and locations due to geometric constraints in 3D space. Such a 3D geometric context plays an important role in resolving visual ambiguities and achieving coherent object detection. In this paper, we develop a RANSAC-CRF framework to detect objects that are geometrically coherent in the 3D world. Different from existing methods, we propose a novel generalized RANSAC algorithm to generate global 3D geometry hypotheses from local entities such that outlier suppression and noise reduction is achieved simultaneously. In addition, we evaluate those hypotheses using a CRF which considers both the compatibility of individual objects under global 3D geometric context and the compatibility between adjacent objects under local 3D geometric context. Experiment results show that our approach compares favorably with the state of the art.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"20 1","pages":"2576-2583"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Coherent Object Detection with 3D Geometric Context from a Single Image\",\"authors\":\"Jiyan Pan, T. Kanade\",\"doi\":\"10.1109/ICCV.2013.320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objects in a real world image cannot have arbitrary appearance, sizes and locations due to geometric constraints in 3D space. Such a 3D geometric context plays an important role in resolving visual ambiguities and achieving coherent object detection. In this paper, we develop a RANSAC-CRF framework to detect objects that are geometrically coherent in the 3D world. Different from existing methods, we propose a novel generalized RANSAC algorithm to generate global 3D geometry hypotheses from local entities such that outlier suppression and noise reduction is achieved simultaneously. In addition, we evaluate those hypotheses using a CRF which considers both the compatibility of individual objects under global 3D geometric context and the compatibility between adjacent objects under local 3D geometric context. Experiment results show that our approach compares favorably with the state of the art.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"20 1\",\"pages\":\"2576-2583\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coherent Object Detection with 3D Geometric Context from a Single Image
Objects in a real world image cannot have arbitrary appearance, sizes and locations due to geometric constraints in 3D space. Such a 3D geometric context plays an important role in resolving visual ambiguities and achieving coherent object detection. In this paper, we develop a RANSAC-CRF framework to detect objects that are geometrically coherent in the 3D world. Different from existing methods, we propose a novel generalized RANSAC algorithm to generate global 3D geometry hypotheses from local entities such that outlier suppression and noise reduction is achieved simultaneously. In addition, we evaluate those hypotheses using a CRF which considers both the compatibility of individual objects under global 3D geometric context and the compatibility between adjacent objects under local 3D geometric context. Experiment results show that our approach compares favorably with the state of the art.