F. Spagna, Lidong Chen, M. Deshpande, Yongping Fan, D. Gambetta, Sujatha Gowder, Sitaraman V. Iyer, Rohit Kumar, P. Kwok, Renuka Krishnamurthy, Chien-chun Lin, R. Mohanavelu, Roan Nicholson, Jeff Ou, Marcus Pasquarella, K. Prasad, Hendra Rustam, Luke Tong, A. Tran, John Wu, Xuguang Zhang
{"title":"78mW 11.8Gb/s串行链路收发器,具有自适应RX均衡和32纳米CMOS波特率CDR","authors":"F. Spagna, Lidong Chen, M. Deshpande, Yongping Fan, D. Gambetta, Sujatha Gowder, Sitaraman V. Iyer, Rohit Kumar, P. Kwok, Renuka Krishnamurthy, Chien-chun Lin, R. Mohanavelu, Roan Nicholson, Jeff Ou, Marcus Pasquarella, K. Prasad, Hendra Rustam, Luke Tong, A. Tran, John Wu, Xuguang Zhang","doi":"10.1109/ISSCC.2010.5433823","DOIUrl":null,"url":null,"abstract":"The last few years have witnessed a rapid increase in serial IO data rates as well as number of IO ports in microprocessors. This trend, poses significant challenges to the serial IO design because of area and power budget limitations but, above all, by the need to achieve stringent bit error rates in the presence of interconnect constraints such as channel loss, impedance discontinuities induced by package and connectors, and crosstalk effects due to routing limitations in the package and on the motherboard. To effectively meet these challenges, the serial IO architecture has evolved to include more complex equalization schemes. Building on the previous work on a 4-tap DFE [1], this paper presents the design of a complete serial IO capable of operating up to 11.8Gb/s, and in particular, focuses on the integration of an adaptive equalizer and baud-rate CDR in the receiver of the serial IO.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":"71 1","pages":"366-367"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"A 78mW 11.8Gb/s serial link transceiver with adaptive RX equalization and baud-rate CDR in 32nm CMOS\",\"authors\":\"F. Spagna, Lidong Chen, M. Deshpande, Yongping Fan, D. Gambetta, Sujatha Gowder, Sitaraman V. Iyer, Rohit Kumar, P. Kwok, Renuka Krishnamurthy, Chien-chun Lin, R. Mohanavelu, Roan Nicholson, Jeff Ou, Marcus Pasquarella, K. Prasad, Hendra Rustam, Luke Tong, A. Tran, John Wu, Xuguang Zhang\",\"doi\":\"10.1109/ISSCC.2010.5433823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last few years have witnessed a rapid increase in serial IO data rates as well as number of IO ports in microprocessors. This trend, poses significant challenges to the serial IO design because of area and power budget limitations but, above all, by the need to achieve stringent bit error rates in the presence of interconnect constraints such as channel loss, impedance discontinuities induced by package and connectors, and crosstalk effects due to routing limitations in the package and on the motherboard. To effectively meet these challenges, the serial IO architecture has evolved to include more complex equalization schemes. Building on the previous work on a 4-tap DFE [1], this paper presents the design of a complete serial IO capable of operating up to 11.8Gb/s, and in particular, focuses on the integration of an adaptive equalizer and baud-rate CDR in the receiver of the serial IO.\",\"PeriodicalId\":6418,\"journal\":{\"name\":\"2010 IEEE International Solid-State Circuits Conference - (ISSCC)\",\"volume\":\"71 1\",\"pages\":\"366-367\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Solid-State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2010.5433823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2010.5433823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 78mW 11.8Gb/s serial link transceiver with adaptive RX equalization and baud-rate CDR in 32nm CMOS
The last few years have witnessed a rapid increase in serial IO data rates as well as number of IO ports in microprocessors. This trend, poses significant challenges to the serial IO design because of area and power budget limitations but, above all, by the need to achieve stringent bit error rates in the presence of interconnect constraints such as channel loss, impedance discontinuities induced by package and connectors, and crosstalk effects due to routing limitations in the package and on the motherboard. To effectively meet these challenges, the serial IO architecture has evolved to include more complex equalization schemes. Building on the previous work on a 4-tap DFE [1], this paper presents the design of a complete serial IO capable of operating up to 11.8Gb/s, and in particular, focuses on the integration of an adaptive equalizer and baud-rate CDR in the receiver of the serial IO.