DWE:用错误解密学习

S. Bian, Masayuki Hiromoto, Takashi Sato
{"title":"DWE:用错误解密学习","authors":"S. Bian, Masayuki Hiromoto, Takashi Sato","doi":"10.1145/3195970.3196032","DOIUrl":null,"url":null,"abstract":"The Learning with Errors (LWE) problem is a novel foundation of a variety of cryptographic applications, including quantumly-secure public-key encryption, digital signature, and fully homomorphic encryption. In this work, we propose an approximate decryption technique for LWE-based cryptosystems. Based on the fact that the decryption process for such systems is inherently approximate, we apply hardware-based approximate computing techniques. Rigorous experiments have shown that the proposed technique simultaneously achieved 1.3× (resp., 2.5×) speed increase, 2.06× (resp., 7.89×) area reduction, 20.5% (resp., 4×) of power reduction, and an average of 27.1% (resp., 65.6%) ciphertext size reduction for public-key encryption scheme (resp., a state-of-the-art fully homomorphic encryption scheme).","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"25 7 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"DWE: Decrypting Learning with Errors with Errors\",\"authors\":\"S. Bian, Masayuki Hiromoto, Takashi Sato\",\"doi\":\"10.1145/3195970.3196032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Learning with Errors (LWE) problem is a novel foundation of a variety of cryptographic applications, including quantumly-secure public-key encryption, digital signature, and fully homomorphic encryption. In this work, we propose an approximate decryption technique for LWE-based cryptosystems. Based on the fact that the decryption process for such systems is inherently approximate, we apply hardware-based approximate computing techniques. Rigorous experiments have shown that the proposed technique simultaneously achieved 1.3× (resp., 2.5×) speed increase, 2.06× (resp., 7.89×) area reduction, 20.5% (resp., 4×) of power reduction, and an average of 27.1% (resp., 65.6%) ciphertext size reduction for public-key encryption scheme (resp., a state-of-the-art fully homomorphic encryption scheme).\",\"PeriodicalId\":6491,\"journal\":{\"name\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"volume\":\"25 7 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3195970.3196032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

带错误学习(LWE)问题是各种密码学应用的新基础,包括量子安全公钥加密、数字签名和完全同态加密。在这项工作中,我们提出了一种基于lwe的密码系统的近似解密技术。基于这类系统的解密过程本质上是近似的,我们采用了基于硬件的近似计算技术。严格的实验表明,该技术可以同时达到1.3 x (p < 0.05)。转速提高2.5倍,转速提高2.06倍。, 7.89×)面积减少20.5% (p < 0.05)。, 4倍)的功率降低,平均27.1% (p < 0.05)。, 65.6%)公钥加密方案的密文大小减小(见图1)。(最先进的全同态加密方案)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DWE: Decrypting Learning with Errors with Errors
The Learning with Errors (LWE) problem is a novel foundation of a variety of cryptographic applications, including quantumly-secure public-key encryption, digital signature, and fully homomorphic encryption. In this work, we propose an approximate decryption technique for LWE-based cryptosystems. Based on the fact that the decryption process for such systems is inherently approximate, we apply hardware-based approximate computing techniques. Rigorous experiments have shown that the proposed technique simultaneously achieved 1.3× (resp., 2.5×) speed increase, 2.06× (resp., 7.89×) area reduction, 20.5% (resp., 4×) of power reduction, and an average of 27.1% (resp., 65.6%) ciphertext size reduction for public-key encryption scheme (resp., a state-of-the-art fully homomorphic encryption scheme).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft-FET: Phase transition material assisted Soft switching F ield E ffect T ransistor for supply voltage droop mitigation Modelling Multicore Contention on the AURIX™ TC27x Sign-Magnitude SC: Getting 10X Accuracy for Free in Stochastic Computing for Deep Neural Networks* Generalized Augmented Lagrangian and Its Applications to VLSI Global Placement* Side-channel security of superscalar CPUs : Evaluating the Impact of Micro-architectural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1