锌掺杂钴铁氧体磁性纳米颗粒吸附去除水中溢油

Ibrahim Ali Ahmed Amar, Zohour Mohamed Alshibani, M. Abdulqadir, I. Abdalsamed, F. Altohami
{"title":"锌掺杂钴铁氧体磁性纳米颗粒吸附去除水中溢油","authors":"Ibrahim Ali Ahmed Amar, Zohour Mohamed Alshibani, M. Abdulqadir, I. Abdalsamed, F. Altohami","doi":"10.33945/SAMI/AJCA.2019.4.9","DOIUrl":null,"url":null,"abstract":"In the present study, Zn-doped cobalt ferrite (CoFe1.9Zn0.1O4) magnetic nanoparticles were successfully synthesized via sol-gel method. The prepared materials were characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The apparent density and magnetic force of CoFe1.9Zn0.1O4 nanoparticles were determined. The results revealed that the prepared materials display an adequate density and considerable magnetic force. The gravimetric oil removal capability tests were also performed to investigate the oil absorption properties of CoFe1.9Zn0.1O4 nanoparticles using four types of oil samples (crude, diesel, gasoline and hydraulic oil) as water pollutant’s model. The oil removal capabilities of the prepared absorbent were found to be 13.72 ± 0.42-5.50 ± 0.53 g/g, 14.99 ± 0.95-8.86 ± 0.42 g/g, 18.23 ± 1.01-8.06 ± 1.26 g/g and 10.58 ± 0.49-5.24 ± 0.31 g/g for crude, diesel engine, gasoline engine and hydraulic oil, respectively. The results suggest that the prepared magnetic nanoparticles can be used as absorbent materials for removing oil spills from water surface.","PeriodicalId":7207,"journal":{"name":"Advanced Journal of Chemistry-Section A","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Oil Spill Removal from Water by Absorption on Zinc-Doped Cobalt Ferrite Magnetic Nanoparticles\",\"authors\":\"Ibrahim Ali Ahmed Amar, Zohour Mohamed Alshibani, M. Abdulqadir, I. Abdalsamed, F. Altohami\",\"doi\":\"10.33945/SAMI/AJCA.2019.4.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, Zn-doped cobalt ferrite (CoFe1.9Zn0.1O4) magnetic nanoparticles were successfully synthesized via sol-gel method. The prepared materials were characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The apparent density and magnetic force of CoFe1.9Zn0.1O4 nanoparticles were determined. The results revealed that the prepared materials display an adequate density and considerable magnetic force. The gravimetric oil removal capability tests were also performed to investigate the oil absorption properties of CoFe1.9Zn0.1O4 nanoparticles using four types of oil samples (crude, diesel, gasoline and hydraulic oil) as water pollutant’s model. The oil removal capabilities of the prepared absorbent were found to be 13.72 ± 0.42-5.50 ± 0.53 g/g, 14.99 ± 0.95-8.86 ± 0.42 g/g, 18.23 ± 1.01-8.06 ± 1.26 g/g and 10.58 ± 0.49-5.24 ± 0.31 g/g for crude, diesel engine, gasoline engine and hydraulic oil, respectively. The results suggest that the prepared magnetic nanoparticles can be used as absorbent materials for removing oil spills from water surface.\",\"PeriodicalId\":7207,\"journal\":{\"name\":\"Advanced Journal of Chemistry-Section A\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Journal of Chemistry-Section A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33945/SAMI/AJCA.2019.4.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Journal of Chemistry-Section A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33945/SAMI/AJCA.2019.4.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本研究采用溶胶-凝胶法制备了掺杂锌的钴铁氧体(CoFe1.9Zn0.1O4)磁性纳米颗粒。采用x射线粉末衍射(XRD)、傅里叶变换红外光谱(FTIR)和扫描电镜(SEM)对制备的材料进行了表征。测定了CoFe1.9Zn0.1O4纳米粒子的表观密度和磁性。结果表明,制备的材料具有足够的密度和相当大的磁力。以原油、柴油、汽油、液压油4种油样为水污染物模型,进行了CoFe1.9Zn0.1O4纳米颗粒的重量脱油性能试验。所得吸附剂对原油、柴油、汽油机和液压油的除油能力分别为13.72±0.42 ~ 5.50±0.53 g/g、14.99±0.95 ~ 8.86±0.42 g/g、18.23±1.01 ~ 8.06±1.26 g/g和10.58±0.49 ~ 5.24±0.31 g/g。结果表明,制备的磁性纳米颗粒可作为去除水面溢油的吸附材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oil Spill Removal from Water by Absorption on Zinc-Doped Cobalt Ferrite Magnetic Nanoparticles
In the present study, Zn-doped cobalt ferrite (CoFe1.9Zn0.1O4) magnetic nanoparticles were successfully synthesized via sol-gel method. The prepared materials were characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The apparent density and magnetic force of CoFe1.9Zn0.1O4 nanoparticles were determined. The results revealed that the prepared materials display an adequate density and considerable magnetic force. The gravimetric oil removal capability tests were also performed to investigate the oil absorption properties of CoFe1.9Zn0.1O4 nanoparticles using four types of oil samples (crude, diesel, gasoline and hydraulic oil) as water pollutant’s model. The oil removal capabilities of the prepared absorbent were found to be 13.72 ± 0.42-5.50 ± 0.53 g/g, 14.99 ± 0.95-8.86 ± 0.42 g/g, 18.23 ± 1.01-8.06 ± 1.26 g/g and 10.58 ± 0.49-5.24 ± 0.31 g/g for crude, diesel engine, gasoline engine and hydraulic oil, respectively. The results suggest that the prepared magnetic nanoparticles can be used as absorbent materials for removing oil spills from water surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adsorption and Photocatalytic Removal of Arsenic from Water by a Porous and Magnetic Nanocomposite: Ag/TiO2/Fe3O4@GO Evaluation of Medicinal Effects of Isoxazole Ring Isosteres on Zonisamide for Autism Treatment by Binding to Potassium Voltage-Gated Channel Subfamily D Member 2 (Kv 4.2) Thermotropic Liquid Crystalline Polyesters Using Aromatic Rigid Diols, Unsaturated Fumaric Acid and Flexible Sebacic Acid Synthesis, Characterization and Antibacterial Activity Studies of Some Transition Metal Chelates of Mn(II), Ni(II) and Cu(II) with Schiff Base Derived from Diacetylmonoxime with O-phenylenediamine Utilization of Sustainable Energies for Purification of Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1