w波段低轮廓波束倾斜连续横向短段阵列天线

IF 0.6 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Applied Computational Electromagnetics Society Journal Pub Date : 2021-01-01 DOI:10.47037/2021.aces.j.360711
Demiao Chu, Yujun Xiong, Ping Li
{"title":"w波段低轮廓波束倾斜连续横向短段阵列天线","authors":"Demiao Chu, Yujun Xiong, Ping Li","doi":"10.47037/2021.aces.j.360711","DOIUrl":null,"url":null,"abstract":"This paper presents a low-profile, high gain, beam-tilted continuous transverse stub (CTS) array antenna at W-band. The antenna compromises 32 radiating slots and is fed by a parallel plate waveguide (PPW) network with a linear source generator. To deflect the outgoing beam, the principle of linear array scanning is adopted to design inverted T-type structure in each stub to introduce wave path difference. PPW network allows the antenna to obtain lower profile compared to other transmission lines. The design procedure, and the antenna characterization are described. The main beam of the antenna is titled 12 degree in H-plane. The simulation and measured results show that this antenna achieves peak gain of 32.4 dB and a 12 degree beam tilt angle at 99GHz. S11 parameters of the antenna is less than -10 dB in a broadband from 96 GHz to 103 GHz. This antenna has an advantage of miniaturization over other high-gain antenna solutions. The promising performance of this proposed CTS antenna reveals the possible candidate for Millimeter wave (MMW) telecommunication applications.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Low-Profile and Beam-tilted Continuous Transverse Stub Array Antenna at W-band\",\"authors\":\"Demiao Chu, Yujun Xiong, Ping Li\",\"doi\":\"10.47037/2021.aces.j.360711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a low-profile, high gain, beam-tilted continuous transverse stub (CTS) array antenna at W-band. The antenna compromises 32 radiating slots and is fed by a parallel plate waveguide (PPW) network with a linear source generator. To deflect the outgoing beam, the principle of linear array scanning is adopted to design inverted T-type structure in each stub to introduce wave path difference. PPW network allows the antenna to obtain lower profile compared to other transmission lines. The design procedure, and the antenna characterization are described. The main beam of the antenna is titled 12 degree in H-plane. The simulation and measured results show that this antenna achieves peak gain of 32.4 dB and a 12 degree beam tilt angle at 99GHz. S11 parameters of the antenna is less than -10 dB in a broadband from 96 GHz to 103 GHz. This antenna has an advantage of miniaturization over other high-gain antenna solutions. The promising performance of this proposed CTS antenna reveals the possible candidate for Millimeter wave (MMW) telecommunication applications.\",\"PeriodicalId\":8207,\"journal\":{\"name\":\"Applied Computational Electromagnetics Society Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Electromagnetics Society Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.47037/2021.aces.j.360711\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2021.aces.j.360711","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种w波段低轮廓、高增益、波束倾斜连续横向存根(CTS)阵列天线。该天线包含32个辐射槽,并由带线性源发生器的平行板波导(PPW)网络馈电。为了使出射光束偏转,采用线阵扫描原理,在每个存根处设计倒t型结构,引入波程差。与其他传输线相比,PPW网络允许天线获得更低的轮廓。介绍了天线的设计过程和天线特性。天线的主波束在h平面上呈12度角。仿真和实测结果表明,该天线在99GHz时峰值增益为32.4 dB,波束倾角为12度。在96 GHz ~ 103 GHz宽带范围内,天线的S11参数小于- 10db。与其他高增益天线解决方案相比,该天线具有小型化的优点。该CTS天线的良好性能为毫米波通信应用提供了可能的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Low-Profile and Beam-tilted Continuous Transverse Stub Array Antenna at W-band
This paper presents a low-profile, high gain, beam-tilted continuous transverse stub (CTS) array antenna at W-band. The antenna compromises 32 radiating slots and is fed by a parallel plate waveguide (PPW) network with a linear source generator. To deflect the outgoing beam, the principle of linear array scanning is adopted to design inverted T-type structure in each stub to introduce wave path difference. PPW network allows the antenna to obtain lower profile compared to other transmission lines. The design procedure, and the antenna characterization are described. The main beam of the antenna is titled 12 degree in H-plane. The simulation and measured results show that this antenna achieves peak gain of 32.4 dB and a 12 degree beam tilt angle at 99GHz. S11 parameters of the antenna is less than -10 dB in a broadband from 96 GHz to 103 GHz. This antenna has an advantage of miniaturization over other high-gain antenna solutions. The promising performance of this proposed CTS antenna reveals the possible candidate for Millimeter wave (MMW) telecommunication applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
28.60%
发文量
75
审稿时长
9 months
期刊介绍: The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study. The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed. A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected. The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.
期刊最新文献
Electromagnetic and Thermal Analysis of a 6/4 Induction Switched Reluctance Machine for Electric Vehicle Application Synthesis of Elliptical Antenna Array using Hybrid SSWOA Algorithm Temperature Controlled Terahertz Absorbers based on Omega Resonators A Simple Interference and Power-based Direction of Arrival Measuring System for Modern Communication A Wideband, High Gain and Low Sidelobe Array Antenna for Modern ETC Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1