中枢胰岛素作用对葡萄糖代谢的调节

H. Inoue
{"title":"中枢胰岛素作用对葡萄糖代谢的调节","authors":"H. Inoue","doi":"10.14748/BMR.V22.33","DOIUrl":null,"url":null,"abstract":"Insulin has been known to act on the hypothalamus, in particular the arcuate nucleus, in the central nervous system. Such central insulin action is not only involved in the regulation of energy metabolism via the regulation of food intake and heat production, but also plays an important role in glucose metabolism by regulating hepatic glucose production and glucose uptake by skeletal muscles. Studies on the intracerebroventricular administration of PI-3K inhibitors or sulfonylureas have demonstrated that hyperpolarization of agouti-related protein neurons induced by the activation of PI-3K signaling/KATP channels in the hypothalamic arcuate nucleus plays an important role in the suppression of hepatic glucose production mediated by central insulin action. Cutting of the vagus nerve overrides the suppression of hepatic glucose production by intracerebroventricular insulin administration, which suggests the involvement of autonomic nerves in central insulin action in the liver. The central insulin action-mediated suppression of hepatic glucose production is associated with decreased gene expression of enzymes involved in hepatic gluconeogenesis, and both increased interleukin-6 expression in hepatic non-parenchymal cells induced by central insulin action and associated activation of hepatic STAT3 play an important role in the suppression of gene expression of hepatic gluconeogenesis-related enzymes. In animal models of obesity and insulin resistance, the central insulin action-mediated hepatic glucose production control mechanism is impaired in both the hypothalamus and liver. Increased hepatic gluconeogenesis in obesity and type-2 diabetes has been attributed to impaired hepatic insulin signaling and increased expression of enzymes involved in hepatic gluconeogenesis due to hyperglycemia, but may also be partially attributed to the impairment of the central insulin action-mediated suppression of hepatic gluconeogenesis. Biomedical Reviews 2011; 22: 31-39.","PeriodicalId":8906,"journal":{"name":"Biomedical Reviews","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"REGULATION OF GLUCOSE METABOLISM BY CENTRAL INSULIN ACTION\",\"authors\":\"H. Inoue\",\"doi\":\"10.14748/BMR.V22.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Insulin has been known to act on the hypothalamus, in particular the arcuate nucleus, in the central nervous system. Such central insulin action is not only involved in the regulation of energy metabolism via the regulation of food intake and heat production, but also plays an important role in glucose metabolism by regulating hepatic glucose production and glucose uptake by skeletal muscles. Studies on the intracerebroventricular administration of PI-3K inhibitors or sulfonylureas have demonstrated that hyperpolarization of agouti-related protein neurons induced by the activation of PI-3K signaling/KATP channels in the hypothalamic arcuate nucleus plays an important role in the suppression of hepatic glucose production mediated by central insulin action. Cutting of the vagus nerve overrides the suppression of hepatic glucose production by intracerebroventricular insulin administration, which suggests the involvement of autonomic nerves in central insulin action in the liver. The central insulin action-mediated suppression of hepatic glucose production is associated with decreased gene expression of enzymes involved in hepatic gluconeogenesis, and both increased interleukin-6 expression in hepatic non-parenchymal cells induced by central insulin action and associated activation of hepatic STAT3 play an important role in the suppression of gene expression of hepatic gluconeogenesis-related enzymes. In animal models of obesity and insulin resistance, the central insulin action-mediated hepatic glucose production control mechanism is impaired in both the hypothalamus and liver. Increased hepatic gluconeogenesis in obesity and type-2 diabetes has been attributed to impaired hepatic insulin signaling and increased expression of enzymes involved in hepatic gluconeogenesis due to hyperglycemia, but may also be partially attributed to the impairment of the central insulin action-mediated suppression of hepatic gluconeogenesis. Biomedical Reviews 2011; 22: 31-39.\",\"PeriodicalId\":8906,\"journal\":{\"name\":\"Biomedical Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14748/BMR.V22.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14748/BMR.V22.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

已知胰岛素作用于中枢神经系统的下丘脑,特别是弓状核。这种胰岛素中枢作用不仅通过调节食物摄入和产热参与能量代谢的调节,还通过调节肝脏葡萄糖生成和骨骼肌葡萄糖摄取在葡萄糖代谢中发挥重要作用。脑室内给药PI-3K抑制剂或磺脲类药物的研究表明,下丘脑弓状核PI-3K信号通路/KATP通道激活诱导的刺痛症相关蛋白神经元的超极化在中枢胰岛素作用介导的肝糖生成的抑制中起重要作用。迷走神经的切断超过了脑室注射胰岛素对肝脏葡萄糖产生的抑制,这表明自主神经参与了肝脏的中枢胰岛素作用。中枢胰岛素作用介导的肝糖生成抑制与肝糖异生相关酶基因表达的降低有关,而中枢胰岛素作用诱导的肝非实质细胞白介素-6表达的增加和相关的肝STAT3的激活在抑制肝糖异生相关酶基因表达中起重要作用。在肥胖和胰岛素抵抗的动物模型中,中枢胰岛素作用介导的肝脏葡萄糖生成控制机制在下丘脑和肝脏中都受到损害。肥胖和2型糖尿病患者肝脏糖异生增加归因于高血糖导致的肝脏胰岛素信号通路受损和参与肝脏糖异生的酶表达增加,但也可能部分归因于胰岛素作用介导的肝糖异生中枢抑制功能受损。生物医学评论2011;22: 31 - 39。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
REGULATION OF GLUCOSE METABOLISM BY CENTRAL INSULIN ACTION
Insulin has been known to act on the hypothalamus, in particular the arcuate nucleus, in the central nervous system. Such central insulin action is not only involved in the regulation of energy metabolism via the regulation of food intake and heat production, but also plays an important role in glucose metabolism by regulating hepatic glucose production and glucose uptake by skeletal muscles. Studies on the intracerebroventricular administration of PI-3K inhibitors or sulfonylureas have demonstrated that hyperpolarization of agouti-related protein neurons induced by the activation of PI-3K signaling/KATP channels in the hypothalamic arcuate nucleus plays an important role in the suppression of hepatic glucose production mediated by central insulin action. Cutting of the vagus nerve overrides the suppression of hepatic glucose production by intracerebroventricular insulin administration, which suggests the involvement of autonomic nerves in central insulin action in the liver. The central insulin action-mediated suppression of hepatic glucose production is associated with decreased gene expression of enzymes involved in hepatic gluconeogenesis, and both increased interleukin-6 expression in hepatic non-parenchymal cells induced by central insulin action and associated activation of hepatic STAT3 play an important role in the suppression of gene expression of hepatic gluconeogenesis-related enzymes. In animal models of obesity and insulin resistance, the central insulin action-mediated hepatic glucose production control mechanism is impaired in both the hypothalamus and liver. Increased hepatic gluconeogenesis in obesity and type-2 diabetes has been attributed to impaired hepatic insulin signaling and increased expression of enzymes involved in hepatic gluconeogenesis due to hyperglycemia, but may also be partially attributed to the impairment of the central insulin action-mediated suppression of hepatic gluconeogenesis. Biomedical Reviews 2011; 22: 31-39.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of NANOG in glioma malignancy development and potential as therapeutic target A sample copy of the textbook Principles of Cell and Tissue Biology In defense of the murburn explanation for aerobic respiration The great Geoffrey Burnstock: A passion for discovery and empathy On the new prospects in biology inspired by epigenetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1