基于传感器融合的飞机乘客蒙面识别与温度监测系统

Feni Isdaryani, Noor Cholis Basjaruddin, Aldi Lugina
{"title":"基于传感器融合的飞机乘客蒙面识别与温度监测系统","authors":"Feni Isdaryani, Noor Cholis Basjaruddin, Aldi Lugina","doi":"10.22146/jnteti.v11i2.3835","DOIUrl":null,"url":null,"abstract":"Transportation is currently an unavoidable necessity. However, the COVID-19 pandemic has impacted all lines of industry, including the Indonesian aviation transportation industry. Technology is one of the solutions to deal with these problems. The monitoring system of masked face recognition and body temperature detection for the check-in process of passengers at the airport is aimed to be developed in this research. The contribution of this research is that the system can distinguish the type of face mask used. Therefore, this monitoring system classified only medical masks and N95/KN95 respirator masks as ‘Good Masked’. IP camera and thermal camera are used to identify a masked face and body temperature, respectively. The sensor fusion method was used for decision-making on passengers whether they can be departed or not. The decision was taken based on the measured body temperature, the use of standardized face masks, and the face recognition of the airport passengers. Convolutional neural network (CNN) method was used for face and face mask recognition. The CNN model training was conducted four times according to the four proposed scenarios. The CNN model that has been trained can distinguish a masked face and a face without a mask. The best results were obtained in the fourth scenario with the comparison of the training dataset to the testing dataset was 9:1 and the epoch was 500 times. The basic deep learning model used for face detection was the single shot multibox detector (SSD) using the ResNet-10 architecture. Meanwhile, the CNN method with the MobileNetV2 architecture was used to detect the use of masks. The accuracy of the CNN model for face recognition and mask recognition was 100%. All check-in monitoring and verification process data were displayed on the web application which was built on the localhost.","PeriodicalId":31477,"journal":{"name":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Masked Face Recognition and Temperature Monitoring Systems for Airplane Passenger Using Sensor Fusion\",\"authors\":\"Feni Isdaryani, Noor Cholis Basjaruddin, Aldi Lugina\",\"doi\":\"10.22146/jnteti.v11i2.3835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transportation is currently an unavoidable necessity. However, the COVID-19 pandemic has impacted all lines of industry, including the Indonesian aviation transportation industry. Technology is one of the solutions to deal with these problems. The monitoring system of masked face recognition and body temperature detection for the check-in process of passengers at the airport is aimed to be developed in this research. The contribution of this research is that the system can distinguish the type of face mask used. Therefore, this monitoring system classified only medical masks and N95/KN95 respirator masks as ‘Good Masked’. IP camera and thermal camera are used to identify a masked face and body temperature, respectively. The sensor fusion method was used for decision-making on passengers whether they can be departed or not. The decision was taken based on the measured body temperature, the use of standardized face masks, and the face recognition of the airport passengers. Convolutional neural network (CNN) method was used for face and face mask recognition. The CNN model training was conducted four times according to the four proposed scenarios. The CNN model that has been trained can distinguish a masked face and a face without a mask. The best results were obtained in the fourth scenario with the comparison of the training dataset to the testing dataset was 9:1 and the epoch was 500 times. The basic deep learning model used for face detection was the single shot multibox detector (SSD) using the ResNet-10 architecture. Meanwhile, the CNN method with the MobileNetV2 architecture was used to detect the use of masks. The accuracy of the CNN model for face recognition and mask recognition was 100%. All check-in monitoring and verification process data were displayed on the web application which was built on the localhost.\",\"PeriodicalId\":31477,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro dan Teknologi Informasi\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro dan Teknologi Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/jnteti.v11i2.3835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/jnteti.v11i2.3835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

交通是目前不可避免的必需品。然而,2019冠状病毒病大流行影响了所有行业,包括印度尼西亚的航空运输业。技术是解决这些问题的方法之一。本研究旨在开发机场旅客值机过程中的蒙面人脸识别和体温检测监控系统。本研究的贡献在于该系统能够区分使用的口罩类型。因此,本监测系统仅将医用口罩和N95/KN95口罩分类为“优质口罩”。IP摄像机和热像仪分别用于识别被蒙面和体温。采用传感器融合的方法对乘客是否可以离场进行决策。这一决定是根据测量体温、使用标准化口罩和对机场乘客的面部识别情况做出的。采用卷积神经网络(CNN)方法对人脸和人脸面具进行识别。根据提出的四种场景,对CNN模型进行了四次训练。经过训练的CNN模型可以区分蒙面和未蒙面的人脸。在第四种场景下,训练数据集与测试数据集的对比为9:1,epoch为500次,得到了最好的结果。用于人脸检测的基本深度学习模型是使用ResNet-10架构的单镜头多盒检测器(SSD)。同时,采用MobileNetV2架构的CNN方法检测蒙版的使用情况。CNN模型对人脸识别和掩模识别的准确率均为100%。所有签入监控和验证过程数据都显示在本地主机上构建的web应用程序上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Masked Face Recognition and Temperature Monitoring Systems for Airplane Passenger Using Sensor Fusion
Transportation is currently an unavoidable necessity. However, the COVID-19 pandemic has impacted all lines of industry, including the Indonesian aviation transportation industry. Technology is one of the solutions to deal with these problems. The monitoring system of masked face recognition and body temperature detection for the check-in process of passengers at the airport is aimed to be developed in this research. The contribution of this research is that the system can distinguish the type of face mask used. Therefore, this monitoring system classified only medical masks and N95/KN95 respirator masks as ‘Good Masked’. IP camera and thermal camera are used to identify a masked face and body temperature, respectively. The sensor fusion method was used for decision-making on passengers whether they can be departed or not. The decision was taken based on the measured body temperature, the use of standardized face masks, and the face recognition of the airport passengers. Convolutional neural network (CNN) method was used for face and face mask recognition. The CNN model training was conducted four times according to the four proposed scenarios. The CNN model that has been trained can distinguish a masked face and a face without a mask. The best results were obtained in the fourth scenario with the comparison of the training dataset to the testing dataset was 9:1 and the epoch was 500 times. The basic deep learning model used for face detection was the single shot multibox detector (SSD) using the ResNet-10 architecture. Meanwhile, the CNN method with the MobileNetV2 architecture was used to detect the use of masks. The accuracy of the CNN model for face recognition and mask recognition was 100%. All check-in monitoring and verification process data were displayed on the web application which was built on the localhost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
Citra Tekstur Terbaik Untuk Gaussian Naïve Bayes Dengan Interpolasi Nearest Neighbor Research and Analysis of IndoBERT Hyperparameter Tuning in Fake News Detection Implementation of QR Code Attendance Security System Using RSA and Hash Algorithms Fog Computing-Based System for Decentralized Smart Parking System by Using Firebase Pemantauan dan Pengendalian Parameter Greenhouse Berbasis IoT Dengan Protokol MQTT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1