通过探索高灵敏度相机噪声增强低光视频

Wei Wang, Xin Chen, Cheng Yang, Xiang Li, Xue-mei Hu, Tao Yue
{"title":"通过探索高灵敏度相机噪声增强低光视频","authors":"Wei Wang, Xin Chen, Cheng Yang, Xiang Li, Xue-mei Hu, Tao Yue","doi":"10.1109/ICCV.2019.00421","DOIUrl":null,"url":null,"abstract":"Enhancing low light videos, which consists of denoising and brightness adjustment, is an intriguing but knotty problem. Under low light condition, due to high sensitivity camera setting, commonly negligible noises become obvious and severely deteriorate the captured videos. To recover high quality videos, a mass of image/video denoising/enhancing algorithms are proposed, most of which follow a set of simple assumptions about the statistic characters of camera noise, e.g., independent and identically distributed(i.i.d.), white, additive, Gaussian, Poisson or mixture noises. However, the practical noise under high sensitivity setting in real captured videos is complex and inaccurate to model with these assumptions. In this paper, we explore the physical origins of the practical high sensitivity noise in digital cameras, model them mathematically, and propose to enhance the low light videos based on the noise model by using an LSTM-based neural network. Specifically, we generate the training data with the proposed noise model and train the network with the dark noisy video as input and clear-bright video as output. Extensive comparisons on both synthetic and real captured low light videos with the state-of-the-art methods are conducted to demonstrate the effectiveness of the proposed method.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"60 1","pages":"4110-4118"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Enhancing Low Light Videos by Exploring High Sensitivity Camera Noise\",\"authors\":\"Wei Wang, Xin Chen, Cheng Yang, Xiang Li, Xue-mei Hu, Tao Yue\",\"doi\":\"10.1109/ICCV.2019.00421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enhancing low light videos, which consists of denoising and brightness adjustment, is an intriguing but knotty problem. Under low light condition, due to high sensitivity camera setting, commonly negligible noises become obvious and severely deteriorate the captured videos. To recover high quality videos, a mass of image/video denoising/enhancing algorithms are proposed, most of which follow a set of simple assumptions about the statistic characters of camera noise, e.g., independent and identically distributed(i.i.d.), white, additive, Gaussian, Poisson or mixture noises. However, the practical noise under high sensitivity setting in real captured videos is complex and inaccurate to model with these assumptions. In this paper, we explore the physical origins of the practical high sensitivity noise in digital cameras, model them mathematically, and propose to enhance the low light videos based on the noise model by using an LSTM-based neural network. Specifically, we generate the training data with the proposed noise model and train the network with the dark noisy video as input and clear-bright video as output. Extensive comparisons on both synthetic and real captured low light videos with the state-of-the-art methods are conducted to demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"60 1\",\"pages\":\"4110-4118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

弱光视频的增强,包括去噪和亮度调整,是一个有趣但棘手的问题。在弱光条件下,由于高感光度相机的设置,通常可以忽略的噪声变得明显,严重影响了拍摄的视频。为了恢复高质量的视频,人们提出了大量的图像/视频去噪/增强算法,其中大多数算法都遵循一组关于摄像机噪声统计特征的简单假设,例如独立同分布(i.i.d)、白噪声、加性噪声、高斯噪声、泊松噪声或混合噪声。然而,在实际捕获的视频中,在高灵敏度设置下的实际噪声是复杂的,用这些假设来建模是不准确的。本文探讨了数码相机中实际高灵敏度噪声的物理来源,建立了高灵敏度噪声的数学模型,并提出了一种基于lstm的神经网络在噪声模型的基础上增强弱光视频的方法。具体来说,我们使用所提出的噪声模型生成训练数据,并以暗噪声视频为输入,明亮视频为输出训练网络。对合成和真实捕获的低光视频与最先进的方法进行了广泛的比较,以证明所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Low Light Videos by Exploring High Sensitivity Camera Noise
Enhancing low light videos, which consists of denoising and brightness adjustment, is an intriguing but knotty problem. Under low light condition, due to high sensitivity camera setting, commonly negligible noises become obvious and severely deteriorate the captured videos. To recover high quality videos, a mass of image/video denoising/enhancing algorithms are proposed, most of which follow a set of simple assumptions about the statistic characters of camera noise, e.g., independent and identically distributed(i.i.d.), white, additive, Gaussian, Poisson or mixture noises. However, the practical noise under high sensitivity setting in real captured videos is complex and inaccurate to model with these assumptions. In this paper, we explore the physical origins of the practical high sensitivity noise in digital cameras, model them mathematically, and propose to enhance the low light videos based on the noise model by using an LSTM-based neural network. Specifically, we generate the training data with the proposed noise model and train the network with the dark noisy video as input and clear-bright video as output. Extensive comparisons on both synthetic and real captured low light videos with the state-of-the-art methods are conducted to demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very Long Natural Scenery Image Prediction by Outpainting VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation Towards Latent Attribute Discovery From Triplet Similarities Gaze360: Physically Unconstrained Gaze Estimation in the Wild Attention Bridging Network for Knowledge Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1