侦探小说吗?学习对比作者归属

Q3 Environmental Science AACL Bioflux Pub Date : 2022-09-23 DOI:10.48550/arXiv.2209.11887
Bo Ai, Yuchen Wang, Yugin Tan, Samson Tan
{"title":"侦探小说吗?学习对比作者归属","authors":"Bo Ai, Yuchen Wang, Yugin Tan, Samson Tan","doi":"10.48550/arXiv.2209.11887","DOIUrl":null,"url":null,"abstract":"Authorship attribution is the task of identifying the author of a given text. The key is finding representations that can differentiate between authors. Existing approaches typically use manually designed features that capture a dataset’s content and style, but these approaches are dataset-dependent and yield inconsistent performance across corpora. In this work, we propose to learn author-specific representations by fine-tuning pre-trained generic language representations with a contrastive objective (Contra-X). We show that Contra-X learns representations that form highly separable clusters for different authors. It advances the state-of-the-art on multiple human and machine authorship attribution benchmarks, enabling improvements of up to 6.8% over cross-entropy fine-tuning. However, we find that Contra-X improves overall accuracy at the cost of sacrificing performance for some authors. Resolving this tension will be an important direction for future work. To the best of our knowledge, we are the first to integrate contrastive learning with pre-trained language model fine-tuning for authorship attribution.","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"34 1","pages":"1142-1157"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Whodunit? Learning to Contrast for Authorship Attribution\",\"authors\":\"Bo Ai, Yuchen Wang, Yugin Tan, Samson Tan\",\"doi\":\"10.48550/arXiv.2209.11887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Authorship attribution is the task of identifying the author of a given text. The key is finding representations that can differentiate between authors. Existing approaches typically use manually designed features that capture a dataset’s content and style, but these approaches are dataset-dependent and yield inconsistent performance across corpora. In this work, we propose to learn author-specific representations by fine-tuning pre-trained generic language representations with a contrastive objective (Contra-X). We show that Contra-X learns representations that form highly separable clusters for different authors. It advances the state-of-the-art on multiple human and machine authorship attribution benchmarks, enabling improvements of up to 6.8% over cross-entropy fine-tuning. However, we find that Contra-X improves overall accuracy at the cost of sacrificing performance for some authors. Resolving this tension will be an important direction for future work. To the best of our knowledge, we are the first to integrate contrastive learning with pre-trained language model fine-tuning for authorship attribution.\",\"PeriodicalId\":39298,\"journal\":{\"name\":\"AACL Bioflux\",\"volume\":\"34 1\",\"pages\":\"1142-1157\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AACL Bioflux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.11887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.11887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 5

摘要

作者归属是识别给定文本的作者的任务。关键是找到能够区分作者的表现形式。现有的方法通常使用手动设计的功能来捕获数据集的内容和风格,但是这些方法依赖于数据集,并且在语料库中产生不一致的性能。在这项工作中,我们建议通过微调带有对比目标(contro - x)的预训练通用语言表示来学习作者特定的表示。我们展示了contro - x学习了为不同作者形成高度可分离簇的表示。它在多个人类和机器作者归属基准上推进了最先进的技术,比交叉熵微调提高了6.8%。然而,我们发现contro - x以牺牲某些作者的性能为代价提高了整体准确性。解决这一矛盾将是今后工作的重要方向。据我们所知,我们是第一个将对比学习与预先训练的语言模型微调结合起来的作者归属。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Whodunit? Learning to Contrast for Authorship Attribution
Authorship attribution is the task of identifying the author of a given text. The key is finding representations that can differentiate between authors. Existing approaches typically use manually designed features that capture a dataset’s content and style, but these approaches are dataset-dependent and yield inconsistent performance across corpora. In this work, we propose to learn author-specific representations by fine-tuning pre-trained generic language representations with a contrastive objective (Contra-X). We show that Contra-X learns representations that form highly separable clusters for different authors. It advances the state-of-the-art on multiple human and machine authorship attribution benchmarks, enabling improvements of up to 6.8% over cross-entropy fine-tuning. However, we find that Contra-X improves overall accuracy at the cost of sacrificing performance for some authors. Resolving this tension will be an important direction for future work. To the best of our knowledge, we are the first to integrate contrastive learning with pre-trained language model fine-tuning for authorship attribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
期刊最新文献
HaRiM^+: Evaluating Summary Quality with Hallucination Risk PESE: Event Structure Extraction using Pointer Network based Encoder-Decoder Architecture Bipartite-play Dialogue Collection for Practical Automatic Evaluation of Dialogue Systems Local Structure Matters Most in Most Languages Unsupervised Domain Adaptation for Sparse Retrieval by Filling Vocabulary and Word Frequency Gaps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1