医疗保健中的隐私保护数据挖掘和机器学习:应用、挑战和解决方案

IF 6.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery Pub Date : 2023-01-24 DOI:10.1002/widm.1490
V. Naresh, Muthusamy Thamarai
{"title":"医疗保健中的隐私保护数据挖掘和机器学习:应用、挑战和解决方案","authors":"V. Naresh, Muthusamy Thamarai","doi":"10.1002/widm.1490","DOIUrl":null,"url":null,"abstract":"Data mining (DM) and machine learning (ML) applications in medical diagnostic systems are budding. Data privacy is essential in these systems as healthcare data are highly sensitive. The proposed work first discusses various privacy and security challenges in these systems. To address these next, we discuss different privacy‐preserving (PP) computation techniques in the context of DM and ML for secure data evaluation and processing. The state‐of‐the‐art applications of these systems in healthcare are analyzed at various stages such as data collection, data publication, data distribution, and output phases regarding PPDM and input, model, training, and output phases in the context of PPML. Furthermore, PP federated learning is also discussed. Finally, we present open challenges in these systems and future research directions.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"87 15 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Privacy‐preserving data mining and machine learning in healthcare: Applications, challenges, and solutions\",\"authors\":\"V. Naresh, Muthusamy Thamarai\",\"doi\":\"10.1002/widm.1490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining (DM) and machine learning (ML) applications in medical diagnostic systems are budding. Data privacy is essential in these systems as healthcare data are highly sensitive. The proposed work first discusses various privacy and security challenges in these systems. To address these next, we discuss different privacy‐preserving (PP) computation techniques in the context of DM and ML for secure data evaluation and processing. The state‐of‐the‐art applications of these systems in healthcare are analyzed at various stages such as data collection, data publication, data distribution, and output phases regarding PPDM and input, model, training, and output phases in the context of PPML. Furthermore, PP federated learning is also discussed. Finally, we present open challenges in these systems and future research directions.\",\"PeriodicalId\":48970,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"volume\":\"87 15 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1490\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1490","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 7

摘要

数据挖掘(DM)和机器学习(ML)在医疗诊断系统中的应用正在崭露头角。由于医疗保健数据高度敏感,数据隐私在这些系统中至关重要。建议的工作首先讨论了这些系统中的各种隐私和安全挑战。为了解决这些问题,接下来,我们将讨论DM和ML背景下用于安全数据评估和处理的不同隐私保护(PP)计算技术。这些系统在医疗保健中的最新应用在各个阶段进行了分析,例如数据收集、数据发布、数据分发和关于PPDM的输出阶段,以及PPML背景下的输入、模型、培训和输出阶段。此外,还讨论了PP联合学习。最后,我们提出了这些系统面临的挑战和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Privacy‐preserving data mining and machine learning in healthcare: Applications, challenges, and solutions
Data mining (DM) and machine learning (ML) applications in medical diagnostic systems are budding. Data privacy is essential in these systems as healthcare data are highly sensitive. The proposed work first discusses various privacy and security challenges in these systems. To address these next, we discuss different privacy‐preserving (PP) computation techniques in the context of DM and ML for secure data evaluation and processing. The state‐of‐the‐art applications of these systems in healthcare are analyzed at various stages such as data collection, data publication, data distribution, and output phases regarding PPDM and input, model, training, and output phases in the context of PPML. Furthermore, PP federated learning is also discussed. Finally, we present open challenges in these systems and future research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
22.70
自引率
2.60%
发文量
39
审稿时长
>12 weeks
期刊介绍: The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.
期刊最新文献
Research on mining software repositories to facilitate refactoring Use of artificial intelligence algorithms to predict systemic diseases from retinal images The benefits and dangers of using machine learning to support making legal predictions Sports analytics review: Artificial intelligence applications, emerging technologies, and algorithmic perspective ExplainFix: Explainable spatially fixed deep networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1