小型ORC微型涡轮膨胀机设计

L. Talluri
{"title":"小型ORC微型涡轮膨胀机设计","authors":"L. Talluri","doi":"10.36253/978-88-5518-061-0","DOIUrl":null,"url":null,"abstract":"The Tesla expander was first developed by N. Tesla at the beginning of the 20th century. In recent years, due to the increasing appeal towards micro power generation and energy recovery from wasted flows, this cost effective expander technology rose a renovated interest. In the present study, a 2D numerical model is realized and a design procedure of a Tesla turbine for ORC applications is proposed. A throughout optimization method is developed by evaluating the losses of each component. The 2D model results are further exploited through the development of 3D computational investigation, which allows an accurate comprehension of the flow characteristics. Finally, two prototypes are designed, realized and tested. The former one is designed to work with air as working fluid. The second prototype is designed to work with organic fluids. The achieved experimental results confirmed the validity and the large potential applicative chances of this emerging technology in the field of micro sizes, low inlet temperature and low expansion ratios.","PeriodicalId":20330,"journal":{"name":"Premio Tesi di Dottorato","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Micro turbo expander design for small scale ORC\",\"authors\":\"L. Talluri\",\"doi\":\"10.36253/978-88-5518-061-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Tesla expander was first developed by N. Tesla at the beginning of the 20th century. In recent years, due to the increasing appeal towards micro power generation and energy recovery from wasted flows, this cost effective expander technology rose a renovated interest. In the present study, a 2D numerical model is realized and a design procedure of a Tesla turbine for ORC applications is proposed. A throughout optimization method is developed by evaluating the losses of each component. The 2D model results are further exploited through the development of 3D computational investigation, which allows an accurate comprehension of the flow characteristics. Finally, two prototypes are designed, realized and tested. The former one is designed to work with air as working fluid. The second prototype is designed to work with organic fluids. The achieved experimental results confirmed the validity and the large potential applicative chances of this emerging technology in the field of micro sizes, low inlet temperature and low expansion ratios.\",\"PeriodicalId\":20330,\"journal\":{\"name\":\"Premio Tesi di Dottorato\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Premio Tesi di Dottorato\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36253/978-88-5518-061-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Premio Tesi di Dottorato","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36253/978-88-5518-061-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

特斯拉膨胀机最早是由特斯拉在20世纪初发明的。近年来,由于对微型发电和从废流中回收能源的需求日益增加,这种具有成本效益的膨胀技术重新引起了人们的兴趣。在本研究中,实现了一个二维数值模型,并提出了一种用于ORC应用的特斯拉涡轮的设计方法。通过评估各部件的损耗,提出了一种整体优化方法。通过三维计算研究的发展,可以进一步利用二维模型的结果,从而准确地理解流动特性。最后对两个原型进行了设计、实现和测试。前者被设计成以空气作为工作流体。第二个原型机设计用于处理有机流体。实验结果证实了该新兴技术在微尺寸、低入口温度和低膨胀比领域的有效性和巨大的潜在应用机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Micro turbo expander design for small scale ORC
The Tesla expander was first developed by N. Tesla at the beginning of the 20th century. In recent years, due to the increasing appeal towards micro power generation and energy recovery from wasted flows, this cost effective expander technology rose a renovated interest. In the present study, a 2D numerical model is realized and a design procedure of a Tesla turbine for ORC applications is proposed. A throughout optimization method is developed by evaluating the losses of each component. The 2D model results are further exploited through the development of 3D computational investigation, which allows an accurate comprehension of the flow characteristics. Finally, two prototypes are designed, realized and tested. The former one is designed to work with air as working fluid. The second prototype is designed to work with organic fluids. The achieved experimental results confirmed the validity and the large potential applicative chances of this emerging technology in the field of micro sizes, low inlet temperature and low expansion ratios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Isotopic fractionation study towards massive star-forming regions across the Galaxy La letteratura cavalleresca e il mondo arabo: il caso di Andrea da Barberino Santa Maria degli Angeli: un monastero camaldolese “dimenticato” nel centro di Firenze Functional validation of genetic variants identified by next generation sequencing in malformations of cortical development Legalità e mutamenti giurisprudenziali nel diritto penale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1