温和水性锌离子电池用锌阳极保护材料的设计

Yuejuan Zhang, S. Bi, Zhiqiang Niu, Weiya Zhou, S. Xie
{"title":"温和水性锌离子电池用锌阳极保护材料的设计","authors":"Yuejuan Zhang, S. Bi, Zhiqiang Niu, Weiya Zhou, S. Xie","doi":"10.20517/energymater.2022.08","DOIUrl":null,"url":null,"abstract":"Rechargeable aqueous Zn-ion batteries (AZIBs) are considered alternative stationary storage systems for large-scale applications due to their high safety, low cost, and high power density. However, Zn anode issues including dendrite formation and side reactions greatly hinder the practical application of AZIBs. To solve the Zn anode issues, various strategies based on material designs have been developed. It is necessary to analyze and classify these strategies according to different materials, because different properties of materials determine the underlying mechanisms. In this review, we briefly introduce the fundamental issues in Zn anodes. Furthermore, this review highlights the material designs for the protection of Zn anodes in mild AZIBs. Finally, we also offer insight into potential directions in the material designs to promote the development of AZIBs in the future.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Design of Zn anode protection materials for mild aqueous Zn-ion batteries\",\"authors\":\"Yuejuan Zhang, S. Bi, Zhiqiang Niu, Weiya Zhou, S. Xie\",\"doi\":\"10.20517/energymater.2022.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rechargeable aqueous Zn-ion batteries (AZIBs) are considered alternative stationary storage systems for large-scale applications due to their high safety, low cost, and high power density. However, Zn anode issues including dendrite formation and side reactions greatly hinder the practical application of AZIBs. To solve the Zn anode issues, various strategies based on material designs have been developed. It is necessary to analyze and classify these strategies according to different materials, because different properties of materials determine the underlying mechanisms. In this review, we briefly introduce the fundamental issues in Zn anodes. Furthermore, this review highlights the material designs for the protection of Zn anodes in mild AZIBs. Finally, we also offer insight into potential directions in the material designs to promote the development of AZIBs in the future.\",\"PeriodicalId\":21863,\"journal\":{\"name\":\"Solar Energy Materials\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/energymater.2022.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2022.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

由于其高安全性、低成本和高功率密度,可充电水性锌离子电池(azib)被认为是大规模应用的替代固定存储系统。然而,锌阳极的枝晶形成和副反应等问题极大地阻碍了azib的实际应用。为了解决锌阳极的问题,基于材料设计的各种策略已经被开发出来。有必要根据不同的材料对这些策略进行分析和分类,因为材料的不同性质决定了其潜在的机制。在这篇综述中,我们简要介绍了锌阳极的基本问题。此外,本文还重点介绍了在轻度azib中保护Zn阳极的材料设计。最后,我们还提出了材料设计的潜在方向,以促进azib在未来的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of Zn anode protection materials for mild aqueous Zn-ion batteries
Rechargeable aqueous Zn-ion batteries (AZIBs) are considered alternative stationary storage systems for large-scale applications due to their high safety, low cost, and high power density. However, Zn anode issues including dendrite formation and side reactions greatly hinder the practical application of AZIBs. To solve the Zn anode issues, various strategies based on material designs have been developed. It is necessary to analyze and classify these strategies according to different materials, because different properties of materials determine the underlying mechanisms. In this review, we briefly introduce the fundamental issues in Zn anodes. Furthermore, this review highlights the material designs for the protection of Zn anodes in mild AZIBs. Finally, we also offer insight into potential directions in the material designs to promote the development of AZIBs in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cathode materials in microbial electrosynthesis systems for carbon dioxide reduction: recent progress and perspectives Strategies towards inhibition of aluminum current collector corrosion in lithium batteries Efficient separation and selective Li recycling of spent LiFePO4 cathode Fluorine chemistry in lithium-ion and sodium-ion batteries PGM-free carbon-based catalysts for the electrocatalytic oxygen reduction reaction: active sites and activity enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1