细胞核分离染色(NIS)方法在困难细胞类型中成像染色质相关蛋白

Q3 Biochemistry, Genetics and Molecular Biology Current Protocols in Cell Biology Pub Date : 2019-08-13 DOI:10.1002/cpcb.94
Amy E. Neely, Xiaomin Bao
{"title":"细胞核分离染色(NIS)方法在困难细胞类型中成像染色质相关蛋白","authors":"Amy E. Neely,&nbsp;Xiaomin Bao","doi":"10.1002/cpcb.94","DOIUrl":null,"url":null,"abstract":"<p>Spatial distribution of chromatin-associated proteins provides invaluable information for understanding gene regulation. Conventional immunostaining is widely used for labeling chromatin-associated proteins in many cell types. However, for a subset of difficult cell types, such as differentiated human keratinocytes, achieving high-quality immunostaining for nuclear proteins remains challenging. To overcome this technical barrier, we developed the nuclei isolation staining (NIS) method. In brief, NIS involves rapid isolation of nuclei from live cells, followed by fixation and staining of the nuclei directly on coverslips for subsequent high-magnification imaging. By removing the cytoplasmic contents and staining just the nuclei, this NIS method drastically improves antibody labeling efficiency for chromatin-associated proteins. In this article, we describe the development and a step-by-step protocol of NIS, using differentiated human keratinocytes as an example. We also discuss other applications, based on the principle of this NIS method, for understanding cell-type and cell-state specific gene regulation. © 2019 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":40051,"journal":{"name":"Current Protocols in Cell Biology","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpcb.94","citationCount":"4","resultStr":"{\"title\":\"Nuclei Isolation Staining (NIS) Method for Imaging Chromatin-Associated Proteins in Difficult Cell Types\",\"authors\":\"Amy E. Neely,&nbsp;Xiaomin Bao\",\"doi\":\"10.1002/cpcb.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spatial distribution of chromatin-associated proteins provides invaluable information for understanding gene regulation. Conventional immunostaining is widely used for labeling chromatin-associated proteins in many cell types. However, for a subset of difficult cell types, such as differentiated human keratinocytes, achieving high-quality immunostaining for nuclear proteins remains challenging. To overcome this technical barrier, we developed the nuclei isolation staining (NIS) method. In brief, NIS involves rapid isolation of nuclei from live cells, followed by fixation and staining of the nuclei directly on coverslips for subsequent high-magnification imaging. By removing the cytoplasmic contents and staining just the nuclei, this NIS method drastically improves antibody labeling efficiency for chromatin-associated proteins. In this article, we describe the development and a step-by-step protocol of NIS, using differentiated human keratinocytes as an example. We also discuss other applications, based on the principle of this NIS method, for understanding cell-type and cell-state specific gene regulation. © 2019 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":40051,\"journal\":{\"name\":\"Current Protocols in Cell Biology\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpcb.94\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpcb.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpcb.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4

摘要

染色质相关蛋白的空间分布为理解基因调控提供了宝贵的信息。常规免疫染色被广泛用于标记许多细胞类型的染色质相关蛋白。然而,对于一些困难的细胞类型,如分化的人角质形成细胞,实现高质量的核蛋白免疫染色仍然具有挑战性。为了克服这一技术障碍,我们开发了细胞核分离染色(NIS)方法。简而言之,NIS涉及从活细胞中快速分离细胞核,然后将细胞核直接固定和染色在盖片上,以便随后进行高倍成像。通过去除细胞质内容物,仅染色细胞核,NIS方法大大提高了染色质相关蛋白的抗体标记效率。在这篇文章中,我们描述了NIS的发展和一步一步的协议,以分化的人角质形成细胞为例。我们还讨论了基于NIS方法原理的其他应用,以了解细胞类型和细胞状态特异性基因调控。©2019 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nuclei Isolation Staining (NIS) Method for Imaging Chromatin-Associated Proteins in Difficult Cell Types

Spatial distribution of chromatin-associated proteins provides invaluable information for understanding gene regulation. Conventional immunostaining is widely used for labeling chromatin-associated proteins in many cell types. However, for a subset of difficult cell types, such as differentiated human keratinocytes, achieving high-quality immunostaining for nuclear proteins remains challenging. To overcome this technical barrier, we developed the nuclei isolation staining (NIS) method. In brief, NIS involves rapid isolation of nuclei from live cells, followed by fixation and staining of the nuclei directly on coverslips for subsequent high-magnification imaging. By removing the cytoplasmic contents and staining just the nuclei, this NIS method drastically improves antibody labeling efficiency for chromatin-associated proteins. In this article, we describe the development and a step-by-step protocol of NIS, using differentiated human keratinocytes as an example. We also discuss other applications, based on the principle of this NIS method, for understanding cell-type and cell-state specific gene regulation. © 2019 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Protocols in Cell Biology
Current Protocols in Cell Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
0.00%
发文量
0
期刊介绍: Developed by leading scientists in the field, Current Protocols in Cell Biology is an essential reference for researchers who study the relationship between specific molecules and genes and their location, function and structure at the cellular level. Updated every three months in all formats, CPCB is constantly evolving to keep pace with the very latest discoveries and developments.
期刊最新文献
Issue Information Measuring Mitochondrial Respiration in Previously Frozen Biological Samples Proximity Ligation Assay for Detecting Protein-Protein Interactions and Protein Modifications in Cells and Tissues in Situ Methods for Investigating Corneal Cell Interactions and Extracellular Vesicles In Vitro Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1