Bali Gk, S. S, K. Y, Dumka Vk, Kalia A, Sharma M, M. N
{"title":"头孢曲松载BSA纳米颗粒的制备、理化表征及药效学研究","authors":"Bali Gk, S. S, K. Y, Dumka Vk, Kalia A, Sharma M, M. N","doi":"10.4172/2157-7439.1000509","DOIUrl":null,"url":null,"abstract":"The aim of the present study was to develop and characterize ceftriaxone loaded BSA nanoparticles. The nanoparticles were prepared by desolvation method. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fourier transform infrared (FT-IR) characterization of the synthesized nanoparticles was done. SEM and TEM revealed that the nanoparticles had a smooth and spherical surface and FT-IR revealed that there was no interaction between the drug and the polymer. Encapsulation efficacy of nanoparticles was 44.8%. The mean particle size of BSA obtained was 149.46 ± 1.05 nm, PDI was 0.09 and the zeta potential was -28 mV. In vitro drug release at pH 7.4 was found to be 85.8% at 12 h time period. Various mathematical models were used and the values nearest to R2 were evaluated. Model fitting revealed that it followed the Higuchi and Korsmeyer Peppas Model. The values of R were higher for Higuchi and Korsmeyers peppas model. Pharmacodynamic studies were done, for S. aureus the results of MIC and MBC of Drug were 2.51 μg and 3 μg. The results of MIC and MBC of sample were 1.51 μg and 2.1 μg and for E. coli the results of MIC and MBC of Drug were 0.05 μg and 0.08 μg. The results of MIC and MBC of sample were 0.05 μg and 0.05 μg.","PeriodicalId":16532,"journal":{"name":"Journal of Nanomedicine & Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Preparation, Physico-Chemical Characterization and Pharmacodynamics of Ceftriaxone Loaded BSA Nanoparticles\",\"authors\":\"Bali Gk, S. S, K. Y, Dumka Vk, Kalia A, Sharma M, M. N\",\"doi\":\"10.4172/2157-7439.1000509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the present study was to develop and characterize ceftriaxone loaded BSA nanoparticles. The nanoparticles were prepared by desolvation method. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fourier transform infrared (FT-IR) characterization of the synthesized nanoparticles was done. SEM and TEM revealed that the nanoparticles had a smooth and spherical surface and FT-IR revealed that there was no interaction between the drug and the polymer. Encapsulation efficacy of nanoparticles was 44.8%. The mean particle size of BSA obtained was 149.46 ± 1.05 nm, PDI was 0.09 and the zeta potential was -28 mV. In vitro drug release at pH 7.4 was found to be 85.8% at 12 h time period. Various mathematical models were used and the values nearest to R2 were evaluated. Model fitting revealed that it followed the Higuchi and Korsmeyer Peppas Model. The values of R were higher for Higuchi and Korsmeyers peppas model. Pharmacodynamic studies were done, for S. aureus the results of MIC and MBC of Drug were 2.51 μg and 3 μg. The results of MIC and MBC of sample were 1.51 μg and 2.1 μg and for E. coli the results of MIC and MBC of Drug were 0.05 μg and 0.08 μg. The results of MIC and MBC of sample were 0.05 μg and 0.05 μg.\",\"PeriodicalId\":16532,\"journal\":{\"name\":\"Journal of Nanomedicine & Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanomedicine & Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2157-7439.1000509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomedicine & Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7439.1000509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation, Physico-Chemical Characterization and Pharmacodynamics of Ceftriaxone Loaded BSA Nanoparticles
The aim of the present study was to develop and characterize ceftriaxone loaded BSA nanoparticles. The nanoparticles were prepared by desolvation method. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fourier transform infrared (FT-IR) characterization of the synthesized nanoparticles was done. SEM and TEM revealed that the nanoparticles had a smooth and spherical surface and FT-IR revealed that there was no interaction between the drug and the polymer. Encapsulation efficacy of nanoparticles was 44.8%. The mean particle size of BSA obtained was 149.46 ± 1.05 nm, PDI was 0.09 and the zeta potential was -28 mV. In vitro drug release at pH 7.4 was found to be 85.8% at 12 h time period. Various mathematical models were used and the values nearest to R2 were evaluated. Model fitting revealed that it followed the Higuchi and Korsmeyer Peppas Model. The values of R were higher for Higuchi and Korsmeyers peppas model. Pharmacodynamic studies were done, for S. aureus the results of MIC and MBC of Drug were 2.51 μg and 3 μg. The results of MIC and MBC of sample were 1.51 μg and 2.1 μg and for E. coli the results of MIC and MBC of Drug were 0.05 μg and 0.08 μg. The results of MIC and MBC of sample were 0.05 μg and 0.05 μg.