Ben Lindley, Francisco Álvarez Velarde, Una Baker, J. Bodi, P. Cosgrove, Alan Charles, C. Fiorina, E. Fridman, J. Křepel, J. Lavarenne, K. Mikityuk, E. Nikitin, A. Ponomarev, S. Radman, E. Shwageraus, B. Tollit
{"title":"热液反馈和差动热膨胀对欧洲堆芯功率分布的影响","authors":"Ben Lindley, Francisco Álvarez Velarde, Una Baker, J. Bodi, P. Cosgrove, Alan Charles, C. Fiorina, E. Fridman, J. Křepel, J. Lavarenne, K. Mikityuk, E. Nikitin, A. Ponomarev, S. Radman, E. Shwageraus, B. Tollit","doi":"10.1115/1.4056930","DOIUrl":null,"url":null,"abstract":"\n The objective of this paper is to quantify the coupling effect on the power distribution of sodium-cooled fast reactors (SFRs), specifically the European SFR. Calculations are performed with several state-of-the-art reactor physics and Multiphysics codes (TRACE/PARCS, DYN3D, WIMS, COUNTHER and GeN-Foam) to build confidence in the methodologies and validity of results. Standalone neutronics calculations were generally in excellent agreement with a reference Monte Carlo-calculated power distribution (from Serpent). Next, the impact of coolant density and fuel temperature Doppler feedback was calculated. Reactivity coefficients for perturbations in the inlet temperature, flow rate and core power were shown to be negative with values of around -0.5 pcm/°C, -0.3 pcm/°C and -3.5 pcm/% respectively. Fuel temperature and coolant density feedback was found to introduce a roughly -1%/+1% in/out power tilt across the core. Calculations were then extended to axial expansion for cases where fuel is linked and unlinked to the clad. Core calculations are in good agreement with each other. The impact of differential fuel expansion is found to be larger for fuel both linked and unlinked to the clad, with the in/out power tilt increasing to around -4%/+2%. Thus, while broadly confirming the known result that standalone physics calculations give good results, the expansion coupling effect is perhaps more than anticipated a priori. These results provide a useful benchmark for the further development of Multiphysics codes and methodologies in support of advanced reactor calculations.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":"63 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of Thermal-hydraulic Feedback and Differential Thermal Expansion On European Sfr Core Power Distribution\",\"authors\":\"Ben Lindley, Francisco Álvarez Velarde, Una Baker, J. Bodi, P. Cosgrove, Alan Charles, C. Fiorina, E. Fridman, J. Křepel, J. Lavarenne, K. Mikityuk, E. Nikitin, A. Ponomarev, S. Radman, E. Shwageraus, B. Tollit\",\"doi\":\"10.1115/1.4056930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The objective of this paper is to quantify the coupling effect on the power distribution of sodium-cooled fast reactors (SFRs), specifically the European SFR. Calculations are performed with several state-of-the-art reactor physics and Multiphysics codes (TRACE/PARCS, DYN3D, WIMS, COUNTHER and GeN-Foam) to build confidence in the methodologies and validity of results. Standalone neutronics calculations were generally in excellent agreement with a reference Monte Carlo-calculated power distribution (from Serpent). Next, the impact of coolant density and fuel temperature Doppler feedback was calculated. Reactivity coefficients for perturbations in the inlet temperature, flow rate and core power were shown to be negative with values of around -0.5 pcm/°C, -0.3 pcm/°C and -3.5 pcm/% respectively. Fuel temperature and coolant density feedback was found to introduce a roughly -1%/+1% in/out power tilt across the core. Calculations were then extended to axial expansion for cases where fuel is linked and unlinked to the clad. Core calculations are in good agreement with each other. The impact of differential fuel expansion is found to be larger for fuel both linked and unlinked to the clad, with the in/out power tilt increasing to around -4%/+2%. Thus, while broadly confirming the known result that standalone physics calculations give good results, the expansion coupling effect is perhaps more than anticipated a priori. These results provide a useful benchmark for the further development of Multiphysics codes and methodologies in support of advanced reactor calculations.\",\"PeriodicalId\":16756,\"journal\":{\"name\":\"Journal of Nuclear Engineering and Radiation Science\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Engineering and Radiation Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Engineering and Radiation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Impact of Thermal-hydraulic Feedback and Differential Thermal Expansion On European Sfr Core Power Distribution
The objective of this paper is to quantify the coupling effect on the power distribution of sodium-cooled fast reactors (SFRs), specifically the European SFR. Calculations are performed with several state-of-the-art reactor physics and Multiphysics codes (TRACE/PARCS, DYN3D, WIMS, COUNTHER and GeN-Foam) to build confidence in the methodologies and validity of results. Standalone neutronics calculations were generally in excellent agreement with a reference Monte Carlo-calculated power distribution (from Serpent). Next, the impact of coolant density and fuel temperature Doppler feedback was calculated. Reactivity coefficients for perturbations in the inlet temperature, flow rate and core power were shown to be negative with values of around -0.5 pcm/°C, -0.3 pcm/°C and -3.5 pcm/% respectively. Fuel temperature and coolant density feedback was found to introduce a roughly -1%/+1% in/out power tilt across the core. Calculations were then extended to axial expansion for cases where fuel is linked and unlinked to the clad. Core calculations are in good agreement with each other. The impact of differential fuel expansion is found to be larger for fuel both linked and unlinked to the clad, with the in/out power tilt increasing to around -4%/+2%. Thus, while broadly confirming the known result that standalone physics calculations give good results, the expansion coupling effect is perhaps more than anticipated a priori. These results provide a useful benchmark for the further development of Multiphysics codes and methodologies in support of advanced reactor calculations.
期刊介绍:
The Journal of Nuclear Engineering and Radiation Science is ASME’s latest title within the energy sector. The publication is for specialists in the nuclear/power engineering areas of industry, academia, and government.